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Completeness theorem for classical logic

@ Suppose that T € Th(CPC) and ¢ ¢ T (T t/cpc ¢). We want
to show that T |~ ¢ in some meaningful semantics.
O T = (Fmp.1) P- 1st completeness theorem
@ (a,p) € QT)iff « <» 5 € T (congruence relation on Fm
compatible with 7 if « € T and («, 5) € Q(T), then 5 € T).
@ Lindenbaum-Tarski algebra: Fm /Q(T) is a Boolean
algebra and T %(FmL/Q(T),T/Q(T)) ©.
2nd completeness theorem
@ Lindenbaum Lemma: If ¢ ¢ T, then there is a maximal
consistent 77 € Th(CPC) such that 7T C 7" and ¢ ¢ T".
@ Fm,/QT') = 2 (subdirectly irreducible Boolean algebra)
and T [=p (1}) - 3rd completeness theorem
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Closure systems and closure operators

Closure system over a set A: a collection of subsets C C P(A)
closed under arbitrary intersections and such that A € C. The
elements of C are called closed sets.

Closure operator over a set A: a mapping C: P(A) — P(A)
such that for every X, Y C A:

Q X CC(x),
Q C(X)=cC(Cc(x)),and
@ if X C v, then C(X) C C(Y).

If Cis a closure operator, {X C A | C(X) = X} is a closure
system.

If C is closure system, C(X) = (|{Y € C | X C Y} is a closure
operator.
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Closure systems and closure operators and logics

Each logic L determines a closure system Th(L) and a closure
operator Thy .

Conversely, given a structural closure operator C over Fm (for
every o, if p € C(T), then o(p) € C(a[I'])), there is a logic L
such that C = Thy..

The set of all L-filters over a given algebra A, Fi_(A) is a
closure system over A. Its associated closure operator is Fi'.
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Transfer theorem for finitarity

A closure operator C is finitary if for every X C A,
C(X)=U{C(Y)| Y CXandY isfinite}.

L is a finitary logic iff Thy, is a finitary closure operator.

Theorem 2.1 (Transfer theorem for finitarity)

Given a logic L, the following conditions are equivalent:

@ L isfinitary (i.e., Thy, is a finitary closure operator).
@ Fi! is a finitary closure operator for any L-algebra A.
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Abstract Lindenbaum Lemma

An element X of a closure system C over A is called maximal
w.r.t. an element « if it is a maximal element of the set
{Y € C | a ¢ Y} w.r.t. the order given by inclusion.

Let C be a closure system corresponding to a finitary closure
operator. If T € C anda ¢ T, then there is T' € C such that
T C T and T' is maximal with respect to a.

An element X of a closure system C over A is saturated if it is
maximal w.r.t. some element a.

Thus Abstract Lindenbaum Lemma actually says that saturated
sets form a base of C.
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Operations on matrices

(A, F): first-order structure in the equality-free predicate
language with function symbols from £ and a unique unary
predicate symbol interpreted by F.

Submatrix: (A,F) C (B,G)ifACBand F =ANG.

(Strict) Homomorphism from a matrix (A, F) to a matrix (B, G):
an algebraic homomorphism i: A — B such that h[F] C G. We
say that 4 is strict if also h[A \ F] C B\ G.

Isomorphism: bijective strict homomorphisms.

Direct product: Given matrices {(A;, F;) | i € I}, their direct
product is (A,F), where A = [[,.;A;and F = [, Fi

The j-projection mj(a) = a(j) is a strict surjective homomorphism
from A onto A;.
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Subdirect products and subdirect irreducibility

A matrix A is said to be representable as a subdirect product of
the family of matrices {A; | i € I} if there is an embedding
homomorphism o from A into the direct product [[;.; A; such
that for every i € I, the composition of « with the i-th projection,
m; o @, IS a surjective homomorphism. In this case, « is called a
subdirect representation of A

A matrix A € K is subdirectly irreducible relative to K if for every
subdirect representation a of A with a family {A; |ie I} CK

there is i € I such that 7; o a is an isomorphism. The class of all
subdirectly irreducible matrices relative to K is denoted as Kgg;.
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Characterization of RSI reduced models

Let L be a weakly implicative logic and A = (A, F) € MOD*(L).
Then A € MOD*(L)rs; iff F is saturated in Fii,(A).

Corollary 2.4
Let L be a weakly implicative logic and A = (A, F) € MOD(L).
Then A* € MOD*(L)gg; Iff F is saturated in Fiy(A).

h|

| A

Corollary 2.5

If L is a finitary weakly implicative logic, then every matrix in
MOD* (L) is representable as a subdirect product of matrices in

MOD* (L)gsI.
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The second completeness theorem

LetL be a weakly implicative logic. Then for any setT" of
formulae and any formula ¢ the following holds:

Lo iff T Ewmop) ¢

Proof.
Using just the soundness part of the FCT it remains to prove:

I' Emop-(L) ¢ implies T'Fp o.
Assume that T" I/, ¢ then there is a theory T s.t.

T =Th,(I')and ¢ ¢ T. Then

@ LindTy = (Fm,,T)* € MOD*(L) and for the
LindTr-evaluation e(y) = [¢]r holds e(y) € [T]r iff¢p € T

@ Thus e[l'] C [T]r and e(y) ¢ [T]r O
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The third completeness theorem

LetL be a finitary weakly implicative logic. Then for any setT" of
formulae and any formula ¢ the following holds:

'L iff T ):MOD*(L)RSI 1P

Proof.
Using just the soundness part of the FCT it remains to prove:

I Emop*(L)gg ¢ IMplies T .
Assume that T" I/, o, then there is a saturated theory T s.t.

T O Thy(T')and ¢ ¢ T. Then

@ LindT; = <Fm£, T>* € MOD*(L)RSI and for the
LindTr-evaluation e(y) = [¢]r holds e(y) € [T]r iff¢p € T

@ Thus e[l'] C [T]r and e(y) ¢ [T]r O
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Leibniz operator

Leibniz operator: the function giving for each F € Fi;(A) the
Leibniz congruence Q4 (F).

Proposition 2.8

Let L be a weakly implicative logic L and A an L-algebra. Then

Q@ Q4 is monotone: if F C G then Q4 (F) C Q4(G).

@ Q4 commutes with inverse images by homomorphisms: for
every L-algebra B, homomorphismh: A — B, and
F e Fip (B ) N

Qu(h~'[F]) = i~ [2(F)] = {{a,b) | (h(a), (b)) € Qp(F)}.

Q QU[FiL(A)] = Conpyrg1)(A).

Conapg+(1)(A) is the set ordered by inclusion of congruences of
A giving a quotient in ALG*(L).
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An example

Recall that for the algebra M € ALG*(BCI) defined via:

M T e f L
T |T L1 1 1
t T t f L
f T 1L t 1
LT T T T

we have

Qu({t, T}) = Qu({t.f, T}) = Idy i.e., (Y is not injective
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Interesting equivalence

Theorem 2.9

Given any weakly implicative logic L, TFAE:

@ Forevery L-algebra A, the Leibniz operator Q4 is a lattice
isomorphism from Fi(A) to Conapg+()(A)-
@ Forevery (A,F) e MOD*(L), F is the least L-filter on A.
© The Leibniz operator Qg - Is a lattice isomorphism from
Th(L) to Conayg+()(Fm.).
© There is a set of equations T in one variable such that for
each A = (A,F) € MOD*(L) and each a € A holds:
a € F if, and only if, u* (a) = v4(a) foreveryu~v € T.
© There is a set of equations T in one variable such that
(Alg) p e {ulp) € vip) |p~veTh

In the last two items the sets T can be taken the same.
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Algebraically implicative logics

Definition 2.10

We say that a logic L is algebraically implicative if it is weakly
implicative and satisfies one of the equivalent conditions from
the previous theorem.

In this case, ALG*(L) is called an equivalent algebraic
semantics for L and the set 7 is called a truth definition.

In many cases, one equation is enough for the truth definition.
For instance, in classical logic, intuitionism, t-norm based fuzzy
logics, etc. the truth definition is {p ~ 1}. Linear logic is
algebraically implicative with 7 = {p A 1T ~ 1}.
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Different logics with the same algebras

L = {-,—}. Algebra A with domain {0, %, 1} and operations:

- =0 1 1

0]1 o1 1 1

2| 2 N

1|0 10 % 1
s =Funy [three-valued tukasiewicz logic]
B=Fuau [Da Costa, D’Ottaviano]

b3 and J5 are both algebraically implicative with

L | ALG*(L) | T(p)
Ly | Q@A) {p~p—p}
3| QA) |{p—=p=p—p}
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Equational consequence

An equation in the language £ is a formal expression of the
form ¢ = 1, where p, ¢ € Fm,.

We say that an equation ¢ ~ 1 is a consequence of a set of
equations IT w.r.t. a class K of £-algebras if for each A € K and
each A-evaluation e we have e(p) = e(1)) whenever e(a) = e(53)
for each a ~ g € II; we denote it by 1T =k ¢ ~ 1.

Proposition 2.12

Let L be a weakly implicative logic and T1 U {y ~ ¢} a set of
equations. Then

e e~ iff {oeoBflaxmfel}bLeo .

Alternatively, using translation p[Il] = e (@ <> B):

II Eargrq) ¢ =y iff plll] L p(p = ¢).
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Characterizations of algebraically implicative logics

We have defined a translation p from (sets of) equations to sets
of formulae using «.

Analogously we define a translation 7 from (sets of) formulae to
sets of equations using the truth definition 7

T[] ={a(p) = B(y) |[peTanda~ € T}

Theorem 2.13
Given any weakly implicative logic L, TFAE:
@ L is algebraically implicative with the truth definition T .
© There is a set of equations T in one variable such that:
QI ':ALG*(L) o = iff p[ll] FL p(p = )
@ p kv plr(p)]
© There is a set of equations T in one variable such that:
Q T'kL w iff T[] FaLg=w) T(¥)
@ p~q=Fac-u) Tl =~ q)]
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Finitary algebraically implicative logics and

quasivarieties

A quasivariety is a class of algebras described by
quasiequations, formal expressions of the form
N, oi = B = ¢ =1, where ay,...,an, B1,..., 00 ¢, 0 € Fmg.

Proposition 2.14

If L is a finitary algebraically implicative logic, then it has a finite
truth definition and ALG* (L) is a quasivariety.
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Rasiowa-implicative and regularly implicative logics

We say that a weakly implicative logic L is
@ regularly implicative if:
(Reg) @, Ly — .
@ Rasiowa-implicative if:
(W) prLY — o

| A\

Proposition 2.16

A weakly implicative logic L is regularly implicative iff all the
filters of the matrices in MOD*(L) are singletons.

Proposition 2.17

A regularly implicative logic L is Rasiowa-implicative iff for each
A = (A, {t}) € MOD* (L) the elementt is the maximum of <,.
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Hierarchy of weakly implicative logics

Proposition 2.18

Each Rasiowa-implicative logic is regularly implicative and each
regularly implicative logic is algebraically implicative.
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The following logics are Rasiowa-implicative:

classical logic
global modal logics
intuitionistic and superintuitionistic logics

many fuzzy logics (Lukasiewicz, Gédel-Dummett, product
logics, BL, MTL, ...)

substructural logics with weakening
inconsistent logic

Example 2.19

The equivalence fragment of classical logic is a regularly
implicative but not Rasiowa-implicative logic.

Linear logic is algebraically, but not regularly, implicative.
The logic BCI is weakly, but not algebraically, implicative.
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