## Logic, Algebra, and Implication – Lesson 2

### Petr Cintula<sup>1</sup> Carles Noguera<sup>2</sup>

<sup>1</sup>Institute of Computer Science Academy of Sciences of the Czech Republic

<sup>2</sup>Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

## Completeness theorem for classical logic

- Suppose that  $T \in \text{Th}(\text{CPC})$  and  $\varphi \notin T$  ( $T \not\vdash_{\text{CPC}} \varphi$ ). We want to show that  $T \not\models \varphi$  in some meaningful semantics.
- $T \not\models_{\langle Fm_{\mathcal{L}},T \rangle} \varphi$ . 1st completeness theorem
- ⟨α, β⟩ ∈ Ω(T) iff α ↔ β ∈ T (congruence relation on *Fm*<sub>L</sub> compatible with T: if α ∈ T and ⟨α, β⟩ ∈ Ω(T), then β ∈ T).
- Lindenbaum-Tarski algebra:  $Fm_{\mathcal{L}}/\Omega(T)$  is a Boolean algebra and  $T \not\models_{\langle Fm_{\mathcal{L}}/\Omega(T), T/\Omega(T) \rangle} \varphi$ .

### 2nd completeness theorem

- Lindenbaum Lemma: If φ ∉ T, then there is a maximal consistent T' ∈ Th(CPC) such that T ⊆ T' and φ ∉ T'.
- *Fm*<sub>L</sub>/Ω(*T'*) ≅ 2 (subdirectly irreducible Boolean algebra) and *T* ⊭<sub>(2,{1})</sub> φ.
   3rd completeness theorem

Closure system over a set *A*: a collection of subsets  $C \subseteq \mathcal{P}(A)$  closed under arbitrary intersections and such that  $A \in C$ . The elements of C are called closed sets.

Closure operator over a set *A*: a mapping  $C: \mathcal{P}(A) \to \mathcal{P}(A)$  such that for every  $X, Y \subseteq A$ :

• 
$$X \subseteq C(X)$$
,  
•  $C(X) = C(C(X))$ , and  
• if  $X \in X$ , there  $C(X) \in C(X)$ 

**③** if *X* ⊆ *Y*, then  $C(X) \subseteq C(Y)$ .

If *C* is a closure operator,  $\{X \subseteq A \mid C(X) = X\}$  is a closure system.

If C is closure system,  $C(X) = \bigcap \{Y \in C \mid X \subseteq Y\}$  is a closure operator.

Each logic L determines a closure system  $\ensuremath{\text{Th}}(L)$  and a closure operator  $\ensuremath{\text{Th}}_L.$ 

Conversely, given a structural closure operator C over  $Fm_{\mathcal{L}}$  (for every  $\sigma$ , if  $\varphi \in C(\Gamma)$ , then  $\sigma(\varphi) \in C(\sigma[\Gamma])$ ), there is a logic L such that  $C = Th_L$ .

The set of all L-filters over a given algebra A,  $\mathcal{F}i_{L}(A)$  is a closure system over A. Its associated closure operator is  $Fi_{L}^{A}$ .

A closure operator *C* is finitary if for every  $X \subseteq A$ ,  $C(X) = \bigcup \{ C(Y) \mid Y \subseteq X \text{ and } Y \text{ is finite} \}.$ 

L is a finitary logic iff  $Th_L$  is a finitary closure operator.

Theorem 2.1 (Transfer theorem for finitarity)

Given a logic L, the following conditions are equivalent:

- **1** L is finitary (i.e.,  $Th_L$  is a finitary closure operator).
- **2**  $\operatorname{Fi}_{L}^{A}$  is a finitary closure operator for any  $\mathcal{L}$ -algebra A.

An element *X* of a closure system C over *A* is called maximal w.r.t. an element *a* if it is a maximal element of the set  $\{Y \in C \mid a \notin Y\}$  w.r.t. the order given by inclusion.

#### Lemma 2.2

Let C be a closure system corresponding to a finitary closure operator. If  $T \in C$  and  $a \notin T$ , then there is  $T' \in C$  such that  $T \subseteq T'$  and T' is maximal with respect to a.

An element *X* of a closure system C over *A* is saturated if it is maximal w.r.t. some element *a*.

Thus Abstract Lindenbaum Lemma actually says that saturated sets form a base of  $\mathcal{C}$ .

 $\langle A, F \rangle$ : first-order structure in the equality-free predicate language with function symbols from  $\mathcal{L}$  and a unique unary predicate symbol interpreted by *F*.

Submatrix:  $\langle A, F \rangle \subseteq \langle B, G \rangle$  if  $A \subseteq B$  and  $F = A \cap G$ .

(Strict) Homomorphism from a matrix  $\langle A, F \rangle$  to a matrix  $\langle B, G \rangle$ : an algebraic homomorphism  $h: A \to B$  such that  $h[F] \subseteq G$ . We say that h is strict if also  $h[A \setminus F] \subseteq B \setminus G$ .

Isomorphism: bijective strict homomorphisms.

Direct product: Given matrices  $\{\langle A_i, F_i \rangle \mid i \in I\}$ , their direct product is  $\langle A, F \rangle$ , where  $A = \prod_{i \in I} A_i$  and  $F = \prod_{i \in I} F_i$ . The *j*-projection  $\pi_j(a) = a(j)$  is a strict surjective homomorphism from *A* onto  $A_j$ . A matrix **A** is said to be representable as a subdirect product of the family of matrices  $\{\mathbf{A}_i \mid i \in I\}$  if there is an embedding homomorphism  $\alpha$  from **A** into the direct product  $\prod_{i \in I} \mathbf{A}_i$  such that for every  $i \in I$ , the composition of  $\alpha$  with the *i*-th projection,  $\pi_i \circ \alpha$ , is a surjective homomorphism. In this case,  $\alpha$  is called a subdirect representation of **A** 

A matrix  $\mathbf{A} \in \mathbb{K}$  is subdirectly irreducible relative to  $\mathbb{K}$  if for every subdirect representation  $\alpha$  of  $\mathbf{A}$  with a family  $\{\mathbf{A}_i \mid i \in I\} \subseteq \mathbb{K}$  there is  $i \in I$  such that  $\pi_i \circ \alpha$  is an isomorphism. The class of all subdirectly irreducible matrices relative to  $\mathbb{K}$  is denoted as  $\mathbb{K}_{RSI}$ .

#### Theorem 2.3

Let L be a weakly implicative logic and  $\mathbf{A} = \langle A, F \rangle \in \mathbf{MOD}^*(\mathbf{L})$ . Then  $\mathbf{A} \in \mathbf{MOD}^*(\mathbf{L})_{RSI}$  iff F is saturated in  $\mathcal{F}i_{\mathbf{L}}(A)$ .

#### Corollary 2.4

Let L be a weakly implicative logic and  $\mathbf{A} = \langle \mathbf{A}, F \rangle \in \mathbf{MOD}(L)$ . Then  $\mathbf{A}^* \in \mathbf{MOD}^*(L)_{RSI}$  iff F is saturated in  $\mathcal{F}i_L(A)$ .

#### Corollary 2.5

If L is a finitary weakly implicative logic, then every matrix in  $MOD^*(L)$  is representable as a subdirect product of matrices in  $MOD^*(L)_{RSI}$ .

## The second completeness theorem

### Theorem 2.6

Let L be a weakly implicative logic. Then for any set  $\Gamma$  of formulae and any formula  $\varphi$  the following holds:

 $\Gamma \vdash_{\mathbf{L}} \varphi \quad \textit{iff} \quad \Gamma \models_{\mathbf{MOD}^*(\mathbf{L})} \varphi.$ 

#### Proof.

Using just the soundness part of the FCT it remains to prove:

 $\Gamma \models_{\mathbf{MOD}^*(\mathbf{L})} \varphi$  implies  $\Gamma \vdash_{\mathbf{L}} \varphi$ .

Assume that  $\Gamma \not\vdash_{L} \varphi$  then there is a theory *T* s.t.  $T = Th_{L}(\Gamma)$  and  $\varphi \notin T$ . Then

- Lind  $\mathbf{T}_T = \langle Fm_{\mathcal{L}}, T \rangle^* \in \mathbf{MOD}^*(\mathbf{L})$  and for the Lind  $\mathbf{T}_T$ -evaluation  $e(\psi) = [\psi]_T$  holds  $e(\psi) \in [T]_T$  iff  $\psi \in T$
- Thus  $e[\Gamma] \subseteq [T]_T$  and  $e(\varphi) \notin [T]_T$

# The third completeness theorem

### Theorem 2.7

Let L be a finitary weakly implicative logic. Then for any set  $\Gamma$  of formulae and any formula  $\varphi$  the following holds:

 $\Gamma \vdash_{\mathsf{L}} \varphi \quad \textit{iff} \quad \Gamma \models_{\mathbf{MOD}^*(\mathsf{L})_{\mathsf{RSI}}} \varphi.$ 

#### Proof.

Using just the soundness part of the FCT it remains to prove:

 $\Gamma \models_{\mathbf{MOD}^*(\mathcal{L})_{\mathrm{RSI}}} \varphi \quad \text{implies} \quad \Gamma \vdash_{\mathcal{L}} \varphi.$ 

Assume that  $\Gamma \not\vdash_{L} \varphi$ , then there is a saturated theory *T* s.t.  $T \supseteq Th_{L}(\Gamma)$  and  $\varphi \notin T$ . Then

- Lind  $\mathbf{T}_T = \langle Fm_{\mathcal{L}}, T \rangle^* \in \mathbf{MOD}^*(\mathbf{L})_{\mathrm{RSI}}$  and for the Lind  $\mathbf{T}_T$ -evaluation  $e(\psi) = [\psi]_T$  holds  $e(\psi) \in [T]_T$  iff  $\psi \in T$
- Thus  $e[\Gamma] \subseteq [T]_T$  and  $e(\varphi) \notin [T]_T$

# Leibniz operator

Leibniz operator: the function giving for each  $F \in \mathcal{F}i_{L}(A)$  the Leibniz congruence  $\Omega_{A}(F)$ .

**Proposition 2.8** 

Let L be a weakly implicative logic L and A an  $\mathcal{L}$ -algebra. Then

•  $\Omega_A$  is monotone: if  $F \subseteq G$  then  $\Omega_A(F) \subseteq \Omega_A(G)$ .

② Ω<sub>A</sub> commutes with inverse images by homomorphisms: for every *L*-algebra *B*, homomorphism h: A → B, and F ∈ *Fi*<sub>L</sub>(B):

$$\Omega_{\boldsymbol{A}}(h^{-1}[F]) = h^{-1}[\Omega_{\boldsymbol{B}}(F)] = \{ \langle a, b \rangle \mid \langle h(a), h(b) \rangle \in \Omega_{\boldsymbol{B}}(F) \}.$$

 $Con_{ALG^*(L)}(A)$  is the set ordered by inclusion of congruences of A giving a quotient in  $ALG^*(L)$ .

Recall that for the algebra  $M \in ALG^*(BCI)$  defined via:

we have

 $\Omega_M(\{t, \top\}) = \Omega_M(\{t, f, \top\}) = \mathrm{Id}_M$  i.e.,  $\Omega_M$  is not injective

### Theorem 2.9

Given any weakly implicative logic L, TFAE:

- For every  $\mathcal{L}$ -algebra A, the Leibniz operator  $\Omega_A$  is a lattice isomorphism from  $\mathcal{F}i_{L}(A)$  to  $Con_{ALG^*(L)}(A)$ .
- **2** For every  $\langle A, F \rangle \in \mathbf{MOD}^*(L)$ , F is the least L-filter on A.
- So The Leibniz operator  $\Omega_{Fm_{\mathcal{L}}}$  is a lattice isomorphism from Th(L) to  $Con_{ALG^*(L)}(Fm_{\mathcal{L}})$ .
- There is a set of equations T in one variable such that for each A = ⟨A, F⟩ ∈ MOD\*(L) and each a ∈ A holds:
   a ∈ F if, and only if, µ<sup>A</sup>(a) = ν<sup>A</sup>(a) for every µ ≈ ν ∈ T.
- There is a set of equations  $\mathcal{T}$  in one variable such that (Alg)  $p \dashv \vdash_{\mathbf{L}} {\mu(p) \leftrightarrow \nu(p) \mid \mu \approx \nu \in \mathcal{T}}.$

In the last two items the sets  $\mathcal{T}$  can be taken the same.

### Definition 2.10

We say that a logic L is algebraically implicative if it is weakly implicative and satisfies one of the equivalent conditions from the previous theorem.

In this case,  $ALG^*(L)$  is called an equivalent algebraic semantics for L and the set  $\mathcal{T}$  is called a truth definition.

#### Example 2.11

In many cases, one equation is enough for the truth definition. For instance, in classical logic, intuitionism, t-norm based fuzzy logics, etc. the truth definition is  $\{p \approx \overline{1}\}$ . Linear logic is algebraically implicative with  $\mathcal{T} = \{p \land \overline{1} \approx \overline{1}\}$ .

# Different logics with the same algebras

 $\mathcal{L} = \{\neg, \rightarrow\}$ . Algebra *A* with domain  $\{0, \frac{1}{2}, 1\}$  and operations:



 $\begin{array}{ll} \mathbb{L}_{3} = \models_{\langle A, \{1\} \rangle} & [\texttt{three-valued Łukasiewicz logic}] \\ \mathbb{J}_{3} = \models_{\langle A, \{\frac{1}{2}, 1\} \rangle} & [\texttt{Da Costa, D'Ottaviano}] \end{array}$ 

 $\mathrm{L}_3$  and  $J_3$  are both algebraically implicative with

## Equational consequence

An equation in the language  $\mathcal{L}$  is a formal expression of the form  $\varphi \approx \psi$ , where  $\varphi, \psi \in Fm_{\mathcal{L}}$ .

We say that an equation  $\varphi \approx \psi$  is a consequence of a set of equations  $\Pi$  w.r.t. a class  $\mathbb{K}$  of  $\mathcal{L}$ -algebras if for each  $A \in \mathbb{K}$  and each A-evaluation e we have  $e(\varphi) = e(\psi)$  whenever  $e(\alpha) = e(\beta)$  for each  $\alpha \approx \beta \in \Pi$ ; we denote it by  $\Pi \models_{\mathbb{K}} \varphi \approx \psi$ .

#### Proposition 2.12

Let L be a weakly implicative logic and  $\Pi \cup \{\varphi \approx \psi\}$  a set of equations. Then

 $\Pi\models_{\mathbf{ALG}^*(\mathbf{L})}\varphi\approx\psi\quad\text{iff}\quad\{\alpha\leftrightarrow\beta\mid\alpha\approx\beta\in\Pi\}\vdash_{\mathbf{L}}\varphi\leftrightarrow\psi.$ 

Alternatively, using translation  $\rho[\Pi] = \bigcup_{\alpha \approx \beta \in \Pi} (\alpha \leftrightarrow \beta)$ :

 $\Pi \models_{\mathbf{ALG}^*(\mathbf{L})} \varphi \approx \psi \quad \textit{iff} \quad \rho[\Pi] \vdash_{\mathbf{L}} \rho(\varphi \approx \psi).$ 

# Characterizations of algebraically implicative logics

We have defined a translation  $\rho$  from (sets of) equations to sets of formulae using  $\leftrightarrow$ .

Analogously we define a translation  $\tau$  from (sets of) formulae to sets of equations using the truth definition T:

 $\tau[\Gamma] = \{ \alpha(\varphi) \approx \beta(\varphi) \mid \varphi \in \Gamma \text{ and } \alpha \approx \beta \in \mathcal{T} \}$ 

#### Theorem 2.13

Given any weakly implicative logic L, TFAE:

- **①** L is algebraically implicative with the truth definition T.
- 2 There is a set of equations T in one variable such that:

$$\Pi \models_{\mathbf{ALG}^*(\mathbf{L})} \varphi \approx \psi \text{ iff } \rho[\Pi] \vdash_{\mathbf{L}} \rho(\varphi \approx \psi)$$

$$\ 2 \ \ p \dashv \vdash_{\mathsf{L}} \rho[\tau(p)]$$

**③** There is a set of equations T in one variable such that:

$$\square \ \Gamma \vdash_{\mathbf{L}} \varphi \ iff \tau[\Gamma] \models_{\mathbf{ALG}^*(\mathbf{L})} \tau(\varphi)$$

$$\ 2 \ \ p \approx q = \models_{\mathbf{ALG}^*(\mathbf{L})} \tau[\rho(p \approx q)]$$

A quasivariety is a class of algebras described by quasiequations, formal expressions of the form  $\bigwedge_{i=1}^{n} \alpha_i \approx \beta_i \Rightarrow \varphi \approx \psi$ , where  $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n, \varphi, \psi \in Fm_{\mathcal{L}}$ .

#### Proposition 2.14

If L is a finitary algebraically implicative logic, then it has a finite truth definition and  $ALG^*(L)$  is a quasivariety.

# Rasiowa-implicative and regularly implicative logics

### Definition 2.15

We say that a weakly implicative logic L is

- regularly implicative if:
  - $(\operatorname{Reg}) \quad \varphi, \psi \vdash_{\operatorname{L}} \psi \to \varphi.$
- Rasiowa-implicative if:

(W)  $\varphi \vdash_{\mathcal{L}} \psi \to \varphi$ .

### Proposition 2.16

A weakly implicative logic L is regularly implicative iff all the filters of the matrices in  $MOD^*(L)$  are singletons.

### Proposition 2.17

A regularly implicative logic L is Rasiowa-implicative iff for each  $\mathbf{A} = \langle \mathbf{A}, \{t\} \rangle \in \mathbf{MOD}^*(L)$  the element *t* is the maximum of  $\leq_{\mathbf{A}}$ .

# Hierarchy of weakly implicative logics

### Proposition 2.18

Each Rasiowa-implicative logic is regularly implicative and each regularly implicative logic is algebraically implicative.

# Examples

The following logics are Rasiowa-implicative:

- classical logic
- global modal logics
- intuitionistic and superintuitionistic logics
- many fuzzy logics (Łukasiewicz, Gödel-Dummett, product logics, BL, MTL, ...)
- substructural logics with weakening
- inconsistent logic
- ...

### Example 2.19

- The equivalence fragment of classical logic is a regularly implicative but not Rasiowa-implicative logic.
- Linear logic is algebraically, but not regularly, implicative.
- The logic BCI is weakly, but not algebraically, implicative.