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Completeness theorem for classical logic

Suppose that T ∈ Th(CPC) and ϕ /∈ T (T 6`CPC ϕ). We want
to show that T 6|= ϕ in some meaningful semantics.
T 6|=〈FmL,T〉 ϕ. 1st completeness theorem
〈α, β〉 ∈ Ω(T) iff α↔ β ∈ T (congruence relation on FmL
compatible with T: if α ∈ T and 〈α, β〉 ∈ Ω(T), then β ∈ T).
Lindenbaum-Tarski algebra: FmL/Ω(T) is a Boolean
algebra and T 6|=〈FmL/Ω(T),T/Ω(T)〉 ϕ.

2nd completeness theorem
Lindenbaum Lemma: If ϕ /∈ T, then there is a maximal
consistent T ′ ∈ Th(CPC) such that T ⊆ T ′ and ϕ /∈ T ′.
FmL/Ω(T ′) ∼= 2 (subdirectly irreducible Boolean algebra)
and T 6|=〈2,{1}〉 ϕ. 3rd completeness theorem
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Closure systems and closure operators

Closure system over a set A: a collection of subsets C ⊆ P(A)
closed under arbitrary intersections and such that A ∈ C. The
elements of C are called closed sets.

Closure operator over a set A: a mapping C : P(A)→ P(A)
such that for every X,Y ⊆ A:

1 X ⊆ C(X),
2 C(X) = C(C(X)), and
3 if X ⊆ Y, then C(X) ⊆ C(Y).

If C is a closure operator, {X ⊆ A | C(X) = X} is a closure
system.

If C is closure system, C(X) =
⋂
{Y ∈ C | X ⊆ Y} is a closure

operator.
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Closure systems and closure operators and logics

Each logic L determines a closure system Th(L) and a closure
operator ThL.

Conversely, given a structural closure operator C over FmL (for
every σ, if ϕ ∈ C(Γ), then σ(ϕ) ∈ C(σ[Γ])), there is a logic L
such that C = ThL.

The set of all L-filters over a given algebra A, F iL(A) is a
closure system over A. Its associated closure operator is FiAL .
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Transfer theorem for finitarity

A closure operator C is finitary if for every X ⊆ A,
C(X) =

⋃
{C(Y) | Y ⊆ X and Y is finite}.

L is a finitary logic iff ThL is a finitary closure operator.

Theorem 2.1 (Transfer theorem for finitarity)
Given a logic L, the following conditions are equivalent:

1 L is finitary (i.e., ThL is a finitary closure operator).
2 FiAL is a finitary closure operator for any L-algebra A.
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Abstract Lindenbaum Lemma

An element X of a closure system C over A is called maximal
w.r.t. an element a if it is a maximal element of the set
{Y ∈ C | a /∈ Y} w.r.t. the order given by inclusion.

Lemma 2.2
Let C be a closure system corresponding to a finitary closure
operator. If T ∈ C and a /∈ T, then there is T ′ ∈ C such that
T ⊆ T ′ and T ′ is maximal with respect to a.

An element X of a closure system C over A is saturated if it is
maximal w.r.t. some element a.

Thus Abstract Lindenbaum Lemma actually says that saturated
sets form a base of C.
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Operations on matrices

〈A,F〉: first-order structure in the equality-free predicate
language with function symbols from L and a unique unary
predicate symbol interpreted by F.

Submatrix: 〈A,F〉 ⊆ 〈B,G〉 if A ⊆ B and F = A ∩ G.

(Strict) Homomorphism from a matrix 〈A,F〉 to a matrix 〈B,G〉:
an algebraic homomorphism h : A→ B such that h[F] ⊆ G. We
say that h is strict if also h[A \ F] ⊆ B \ G.

Isomorphism: bijective strict homomorphisms.

Direct product: Given matrices {〈Ai,Fi〉 | i ∈ I}, their direct
product is 〈A,F〉, where A =

∏
i∈I Ai and F =

∏
i∈I Fi.

The j-projection πj(a) = a(j) is a strict surjective homomorphism
from A onto Aj.
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Subdirect products and subdirect irreducibility

A matrix A is said to be representable as a subdirect product of
the family of matrices {Ai | i ∈ I} if there is an embedding
homomorphism α from A into the direct product

∏
i∈I Ai such

that for every i ∈ I, the composition of α with the i-th projection,
πi ◦ α, is a surjective homomorphism. In this case, α is called a
subdirect representation of A

A matrix A ∈ K is subdirectly irreducible relative to K if for every
subdirect representation α of A with a family {Ai | i ∈ I} ⊆ K
there is i ∈ I such that πi ◦ α is an isomorphism. The class of all
subdirectly irreducible matrices relative to K is denoted as KRSI.
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Characterization of RSI reduced models

Theorem 2.3
Let L be a weakly implicative logic and A = 〈A,F〉 ∈MOD∗(L).
Then A ∈MOD∗(L)RSI iff F is saturated in F iL(A).

Corollary 2.4

Let L be a weakly implicative logic and A = 〈A,F〉 ∈MOD(L).
Then A∗ ∈MOD∗(L)RSI iff F is saturated in F iL(A).

Corollary 2.5
If L is a finitary weakly implicative logic, then every matrix in
MOD∗(L) is representable as a subdirect product of matrices in
MOD∗(L)RSI.
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The second completeness theorem

Theorem 2.6
Let L be a weakly implicative logic. Then for any set Γ of
formulae and any formula ϕ the following holds:

Γ `L ϕ iff Γ |=MOD∗(L) ϕ.

Proof.
Using just the soundness part of the FCT it remains to prove:

Γ |=MOD∗(L) ϕ implies Γ `L ϕ.

Assume that Γ 6`L ϕ then there is a theory T s.t.
T = ThL(Γ) and ϕ /∈ T. Then

LindTT = 〈FmL,T〉∗ ∈MOD∗(L) and for the
LindTT -evaluation e(ψ) = [ψ]T holds e(ψ) ∈ [T]T iff ψ ∈ T

Thus e[Γ] ⊆ [T]T and e(ϕ) /∈ [T]T
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The third completeness theorem

Theorem 2.7
Let L be a finitary weakly implicative logic. Then for any set Γ of
formulae and any formula ϕ the following holds:

Γ `L ϕ iff Γ |=MOD∗(L)RSI ϕ.

Proof.
Using just the soundness part of the FCT it remains to prove:

Γ |=MOD∗(L)RSI ϕ implies Γ `L ϕ.

Assume that Γ 6`L ϕ, then there is a saturated theory T s.t.
T ⊇ ThL(Γ) and ϕ /∈ T. Then

LindTT = 〈FmL,T〉∗ ∈MOD∗(L)RSI and for the
LindTT -evaluation e(ψ) = [ψ]T holds e(ψ) ∈ [T]T iff ψ ∈ T

Thus e[Γ] ⊆ [T]T and e(ϕ) /∈ [T]T

Petr Cintula and Carles Noguera Logic, Algebra, and Implication – Lesson 2



Leibniz operator

Leibniz operator: the function giving for each F ∈ F iL(A) the
Leibniz congruence ΩA(F).

Proposition 2.8
Let L be a weakly implicative logic L and A an L-algebra. Then

1 ΩA is monotone: if F ⊆ G then ΩA(F) ⊆ ΩA(G).
2 ΩA commutes with inverse images by homomorphisms: for

every L-algebra B, homomorphism h : A→ B, and
F ∈ F iL(B):

ΩA(h−1[F]) = h−1[ΩB(F)] = {〈a, b〉 | 〈h(a), h(b)〉 ∈ ΩB(F)}.

3 ΩA[F iL(A)] = ConALG∗(L)(A).

ConALG∗(L)(A) is the set ordered by inclusion of congruences of
A giving a quotient in ALG∗(L).
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An example

Recall that for the algebra M ∈ ALG∗(BCI) defined via:

→M > t f ⊥
> > ⊥ ⊥ ⊥
t > t f ⊥
f > ⊥ t ⊥
⊥ > > > >

we have

ΩM({t,>}) = ΩM({t, f ,>}) = IdM i.e., ΩM is not injective
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Interesting equivalence

Theorem 2.9
Given any weakly implicative logic L, TFAE:

1 For every L-algebra A, the Leibniz operator ΩA is a lattice
isomorphism from F iL(A) to ConALG∗(L)(A).

2 For every 〈A,F〉 ∈MOD∗(L), F is the least L-filter on A.
3 The Leibniz operator ΩFmL is a lattice isomorphism from

Th(L) to ConALG∗(L)(FmL).
4 There is a set of equations T in one variable such that for

each A = 〈A,F〉 ∈MOD∗(L) and each a ∈ A holds:
a ∈ F if, and only if, µA(a) = νA(a) for every µ ≈ ν ∈ T .

5 There is a set of equations T in one variable such that
(Alg) p a`L {µ(p)↔ ν(p) | µ ≈ ν ∈ T }.

In the last two items the sets T can be taken the same.
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Algebraically implicative logics

Definition 2.10
We say that a logic L is algebraically implicative if it is weakly
implicative and satisfies one of the equivalent conditions from
the previous theorem.
In this case, ALG∗(L) is called an equivalent algebraic
semantics for L and the set T is called a truth definition.

Example 2.11
In many cases, one equation is enough for the truth definition.
For instance, in classical logic, intuitionism, t-norm based fuzzy
logics, etc. the truth definition is {p ≈ 1}. Linear logic is
algebraically implicative with T = {p ∧ 1 ≈ 1}.
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Different logics with the same algebras

L = {¬,→}. Algebra A with domain {0, 1
2 , 1} and operations:

¬
0 1
1
2

1
2

1 0

→ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

Ł3 = |=〈A,{1}〉 [three-valued Łukasiewicz logic]
J3 = |=〈A,{ 1

2 ,1}〉
[Da Costa, D’Ottaviano]

Ł3 and J3 are both algebraically implicative with

L ALG∗(L) T (p)

Ł3 Q(A) {p ≈ p→ p}
J3 Q(A) {¬p→ p ≈ p→ p}

Petr Cintula and Carles Noguera Logic, Algebra, and Implication – Lesson 2



Equational consequence

An equation in the language L is a formal expression of the
form ϕ ≈ ψ, where ϕ,ψ ∈ FmL.

We say that an equation ϕ ≈ ψ is a consequence of a set of
equations Π w.r.t. a class K of L-algebras if for each A ∈ K and
each A-evaluation e we have e(ϕ) = e(ψ) whenever e(α) = e(β)
for each α ≈ β ∈ Π; we denote it by Π |=K ϕ ≈ ψ.

Proposition 2.12

Let L be a weakly implicative logic and Π ∪ {ϕ ≈ ψ} a set of
equations. Then

Π |=ALG∗(L) ϕ ≈ ψ iff {α↔ β | α ≈ β ∈ Π} `L ϕ↔ ψ.

Alternatively, using translation ρ[Π] =
⋃
α≈β∈Π(α↔ β):

Π |=ALG∗(L) ϕ ≈ ψ iff ρ[Π] `L ρ(ϕ ≈ ψ).
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Characterizations of algebraically implicative logics

We have defined a translation ρ from (sets of) equations to sets
of formulae using↔.
Analogously we define a translation τ from (sets of) formulae to
sets of equations using the truth definition T :

τ [Γ] = {α(ϕ) ≈ β(ϕ) | ϕ ∈ Γ and α ≈ β ∈ T }

Theorem 2.13
Given any weakly implicative logic L, TFAE:

1 L is algebraically implicative with the truth definition T .
2 There is a set of equations T in one variable such that:

1 Π |=ALG∗(L) ϕ ≈ ψ iff ρ[Π] `L ρ(ϕ ≈ ψ)
2 p a`L ρ[τ(p)]

3 There is a set of equations T in one variable such that:
1 Γ `L ϕ iff τ [Γ] |=ALG∗(L) τ(ϕ)
2 p ≈ q =||=ALG∗(L) τ [ρ(p ≈ q)]
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Finitary algebraically implicative logics and
quasivarieties

A quasivariety is a class of algebras described by
quasiequations, formal expressions of the form∧n

i=1 αi ≈ βi ⇒ ϕ ≈ ψ, where α1, . . . , αn, β1, . . . , βn, ϕ, ψ ∈ FmL.

Proposition 2.14
If L is a finitary algebraically implicative logic, then it has a finite
truth definition and ALG∗(L) is a quasivariety.

Petr Cintula and Carles Noguera Logic, Algebra, and Implication – Lesson 2



Rasiowa-implicative and regularly implicative logics

Definition 2.15
We say that a weakly implicative logic L is

regularly implicative if:
(Reg) ϕ,ψ `L ψ → ϕ.

Rasiowa-implicative if:
(W) ϕ `L ψ → ϕ.

Proposition 2.16
A weakly implicative logic L is regularly implicative iff all the
filters of the matrices in MOD∗(L) are singletons.

Proposition 2.17
A regularly implicative logic L is Rasiowa-implicative iff for each
A = 〈A, {t}〉 ∈MOD∗(L) the element t is the maximum of ≤A.
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Hierarchy of weakly implicative logics

Proposition 2.18
Each Rasiowa-implicative logic is regularly implicative and each
regularly implicative logic is algebraically implicative.
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Examples

The following logics are Rasiowa-implicative:
classical logic
global modal logics
intuitionistic and superintuitionistic logics
many fuzzy logics (Łukasiewicz, Gödel-Dummett, product
logics, BL, MTL, ...)
substructural logics with weakening
inconsistent logic
. . .

Example 2.19
The equivalence fragment of classical logic is a regularly
implicative but not Rasiowa-implicative logic.
Linear logic is algebraically, but not regularly, implicative.
The logic BCI is weakly, but not algebraically, implicative.

Petr Cintula and Carles Noguera Logic, Algebra, and Implication – Lesson 2


