
Generalized continuous and left-continuous t-norms

arising from algebraic semantics for fuzzy logics ∗

Carles Noguera
Dept. of Mathematics and Computer Science, University of Siena

Pian dei Mantellini 44, 53100 Siena, Italy
cnoguera@iiia.csic.es

Francesc Esteva, Llúıs Godo
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Abstract

This paper focuses on the issue of how generalizations of continuous and left-
continuous t-norms over linearly ordered sets should be from a logical point of view.
Taking into account recent results in the scope of algebraic semantics for fuzzy logics over
chains with a monoidal residuated operation, we advocate linearly ordered BL-algebras
and MTL-algebras as adequate generalizations of continuous and left-continuous t-norms
respectively. In both cases, the underlying basic structure is that of linearly ordered
residuated lattices. Although the residuation property is equivalent to left-continuity
in t-norms, continuous t-norms have received much more attention due to their simpler
structure. We review their complete description in terms of ordinal sums and discuss the
problem of describing the structure of their generalization to BL-chains. In particular we
show the good behavior of BL-algebras over a finite or complete chain, and discuss the
partial knowledge of rational BL-chains. Then we move to the general non-continuous
case corresponding to left-continuous t-norms and MTL-chains. The unsolved problem
of describing the structure of left-continuous t-norms is presented together with a fistful
of construction-decomposition techniques that apply to some distinguished families of
t-norms and, finally, we discuss the situation in the general study of MTL-chains as a
natural generalization of left-continuous t-norms.

Keywords: BL-chains, Continuous t-norms, Left-continuous t-norms, Mathematical
Fuzzy Logic, Monoidal t-norm based Logic (MTL), MTL-chains, MV-algebras, Rational
chains.

1 Introduction: t-norms and their generalizations

Triangular norms (t-norms, for short) are a special kind of aggregation functions that ap-
peared in the framework of probabilistic metric spaces (see Schweizer and Sklar’s works

∗This is a completely revised and extended version of the conference paper [27].
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[83, 84]) following the ideas of Menger exposed in [71] to deal with triangular inequality.
They are binary functions defined over the real unit interval T : [0, 1]2 → [0, 1] such that for
every a, b, c ∈ [0, 1]:

• T (a, T (b, c)) = T (T (a, b), c) (associativity)

• T (a, b) = T (b, a) (commutativity)

• If b ≤ c, then T (a, b) ≤ T (a, c) (monotonicity)

• T (a, 1) = a (neutral element)

Some other properties follow immediately from the definition.

• T (a, 0) = 0, for every a ∈ [0, 1].

• T (a, b) ≤ min{a, b}, for every a, b ∈ [0, 1].

Since they are binary functions we may use an infix operational notation, such as a ∗ b,
rather than T (a, b).

In the late 70s and beginning of the 80s several scholars, like Alsina, Trillas and Valverde
[3] Höhle [44], Klement [60] or Dubois and Prade [19, 20], proposed t-norms as a suitable
class of functions to model the intersection of fuzzy sets (Fuzzy Set Theory had been founded
by Zadeh in 1965 [89]), together with their dual functions, t-conorms, to model unions, and
the so-called negation functions for the complement (see [85, 22]). As regards to implication,
in [86] it was proposed to model it by using either R-implications or S-implications. Namely,
given a t-norm ∗ the corresponding R-implication and S-implication are respectively defined
as binary functions →∗R and →∗S such that, for every a, b ∈ [0, 1],

a→∗R b = sup{c ∈ [0, 1] | a ∗ c ≤ b}

and
a→∗S b = n(a ∗ n(b))

where n is an involutive negation, i.e. a non-increasing bijection n : [0, 1] → [0, 1] such that
n(n(x)) = x for all x ∈ [0, 1]. These two implications are generalizations of the classical
material implication when restricted to {0, 1}. One advantage of R-implications is that they
reflect the order, namely they satisfy the following property: a →∗R b = 1 iff a ≤ b, which is
in the other hand not generally satisfied by S-implications.

In fact, the notion of R-implication is very close to the notion of residuum which arises
from the theory of residuated lattices. Namely, an algebraic structure A = 〈A,&,→,∧,∨, 0, 1〉
is said to be a (bounded commutative integral) residuated lattice if:

• 〈A,∧,∨, 0, 1〉 is a bounded lattice,

• 〈A,&, 1〉 is an ordered commutative monoid with neutral element 1,

• → is the residuum of &, or equivalently (&,→) is an adjoint pair, i.e. for every a, b, c ∈ A
it holds that a&c ≤ b if and only if c ≤ a→ b.
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It is easy to see that, in a residuated lattice, the residuum is uniquely determined by the
following stipulation: a → b = max{c ∈ A | a&c ≤ b}. This shows exactly the difference
between an R-implication and a residuum in the case of t-norms. Indeed, since t-norms are
defined over [0, 1], which is a complete set, the R-implication (the supremum) for each t-
norm always exists, while the residuum (the maximum) in general may not exist. In fact, the
residuum of a t-norm exists if, and only if, the t-norm is left-continuous.

In the last years, a great interest for left-continuous t-norms and their residua has come
from the logical field. Indeed, as logical deductive systems were developed to reason with
predicates that can be modeled by fuzzy sets, t-norms started to be used as a semantical inter-
pretation of logical conjunction as well (and analogously for the remaining logical connectives
and functions proposed to model set-theoric operations in fuzzy sets). In this new framework,
whose landmark is Hájek’s celebrated monograph [41], typically the particular fuzzy logics
are syntactically presented as Hilbert-style calculi which afterwards receive a truth-functional
correct and complete semantics formed by [0, 1]-valued algebras. These logics often lack the
structural law of contraction, which axiomatically can be expressed as ϕ → ϕ&ϕ, and this
justifies their inclusion in the broad family of so-called substructural logics.1

As it is usual in these logics, the lack of contraction implies a splitting of conjunction
connective into two different ones, say & and ∧, which retain separately some classical prop-
erties of conjunction. In the typical [0, 1]-valued algebras for fuzzy logics & is interpreted by
a t-norm ∗, and ∧ by the min function. Moreover, it is usual to have modus ponens as an
inference rule in these systems: from ϕ and ϕ → ψ infer ψ. Assume that v is an evaluation
of the formulae in [0, 1]; by truth-functionality, the value of ϕ&ψ is v(ϕ) ∗ v(ψ) and the value
of ϕ → ψ is v(ϕ) ⇒ v(ψ), where ⇒ is the functional interpretation of implication (which
is in principle required to at least preserve the {0, 1} truth value combinations of classical
material implication). To have modus ponens as a valid rule amounts to require that v(ϕ) = 1
and v(ϕ) ⇒ v(ψ) = 1 imply v(ψ) = 1, i.e. that the truth-value 1 be preserved by modus
ponens. But in fuzzy logic we usually want something else, that inference be truth preserving,
in the sense that the truer the premises are, the truer the conclusion is. Assuming that ⇒
captures the order (x ⇒ y = 1 iff x ≤ y), this is achieved by requiring that the formula
ϕ&(ϕ→ ψ)→ ψ be a tautology, which in a sense is declaring that the truth value of the set
of premises is obtained by aggregating v(ϕ) and v(ϕ→ ψ) by means of the t-norm ∗. Indeed,
under our assumptions, v(ϕ&(ϕ → ψ) → ψ) = 1 holds iff v(ϕ) ∗ (v(ϕ) ⇒ v(ψ)) ≤ v(ψ).
Although many definitions of ⇒ would satisfy this condition, the traditional solution is to
take v(ϕ) ⇒ v(ψ) = max{c ∈ [0, 1] | v(ϕ) ∗ c ≤ v(ψ)}, i.e. the maximum value that ful-
fills the required inequality, and so making the modus ponens rule as powerful as possible
(in the sense that it will allow to derive maximally true conclusions). Obviously this con-
dition requires ⇒ to be the residuum of ∗ –and not just its R-implication– and therefore
∗ must be left-continuous (we usually denote the residuum of ∗ by ⇒∗). Thus, the typical
[0, 1]-valued semantics for fuzzy logics are algebras defined by a left-continuous t-norm; in
symbols: algebras of the form [0, 1]∗ = 〈[0, 1], ∗,⇒∗,min,max, 0, 1〉, which are a particular
kind of residuated lattices. It explains, eventually, why left-continuous t-norms have become
a central issue for Mathematical Fuzzy Logic (the subfield of Mathematical Logic devoted to
the study of fuzzy logic systems, that, mainly arising from [41], has been rapidly growing in
recent times).

In a first stage, fuzzy logics were based on semantics of continuous t-norms. It was the
1For an up-to-date monograph on substructural logics we refer the reader to [35].
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case of the main systems studied in [41] and in the pioneering works that led to Hájek’s
monograph:  Lukasiewicz logic (complete w.r.t.  Lukasiewicz t-norm [64, 10]), Gödel-Dummett
logic (complete w.r.t. the t-norm given by the minimum operation [38, 21]), Product (complete
w.r.t. the t-norm given by the usual product of reals [43]) and BL logic (complete w.r.t. the
semantics given by all continuous t-norms [41, 13]). In fact, the first example of a left-
continuous non-continuous t-norm was found in the beginning of the nineties, namely the
nilpotent minimum t-norm [81, 31]. This finding, and the fact that left-continuity is the
sufficient and necessary condition for a t-norm to have a residuum, motivated the introduction
of MTL logic by Esteva and Godo [24] which was proved to be complete w.r.t. the semantics
given by all left-continuous t-norms [57]. However, no matter how well justified the left-
continuous t-norm based logics might be, there is a crucial difference between their study and
that of logics of continuous t-norms: while the ordinal sum representation provides a nice
and useful structural theorem for continuous t-norms [75, 63], we lack a general structural
description of left-continuous t-norms.

Besides their origin in probabilistic metric spaces and their interest in Fuzzy Set Theory
and in Mathematical Fuzzy logic, t-norms have proved to be useful aggregation operators
in many other contexts, so their study has become an independent enterprise which has led
to an intensive research (see for instance the monographs [61, 4]). Such development of t-
norm theory has produced, in particular, several extensions of the initial notion of t-norm
motivated by their applications. For instance, some researchers have extended the concept
by replacing the domain [0, 1] by any finite totally ordered set, i.e. generalized t-norms over
finite sets [39, 69, 70]. In particular, this trend has resulted in a valuable classification of
the so-called smooth t-norms in [69] which is analogous to the representation of continuous
t-norms. Another stream of research has consisted in further generalizing t-norms over direct
product of lattices [18, 56], such as [0, 1]2 or in general [0, 1]n, or over arbitrary bounded
partially ordered sets [90].2 Finally, another enhancement of t-norm theory appears naturally
when considering the algebraic semantics of fuzzy logic systems. A wide family of these
logics, in addition to their possible completeness w.r.t. a semantics of left-continuous t-norms
on [0, 1], are algebraizable in the sense that they enjoy a correct and complete algebraic
semantics which is linked to the logic in a very strong way (see [6]). Algebraic semantics
for fuzzy logics are typically a variety of algebras (a class that can be presented by means
of equations)3 with two important features: (i) all its members are bounded commutative
integral residuated lattices, which implies that they have an operation & behaving essentially
as a t-norm (associative, commutative, monotonic and with an neutral element which is the
maximum of the lattice), and (ii) every algebra is representable as a subdirect product of
linearly ordered algebras in the variety. Therefore, one can consider the monoidal operation
& in these algebras as a natural generalization of t-norms over some special kind of lattices
or, more restrictively, just t-norms over the linearly ordered algebras (as they are enough to
describe all the members of the variety). Some recent works show that Mathematical Fuzzy
Logic is starting to emancipate from the interval [0, 1] as the only intended semantics for the
logics, and other semantics of linearly ordered algebras are being considered instead, such
as those given by finite chains, chains over the rationals or chains over the hyperreals (see

2In this general setting the study of t-norms actually becomes exactly the study of bounded commutative
partially ordered monoids.

3Equivalently, a variety is a class of algebras closed under homomorphic images, subalgebras and direct
products. This or any other unexplained basic notion from Universal Algebra can be found for instance in the
monograph [8].
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e.g. [30, 15, 28, 73]). Notice, that this last direction differs from the previous mentioned
generalizations in a crucial point: as long as it must provide a semantics for fuzzy logics it
must preserve the residuation property.

The present paper is devoted to the generalizations of (left-continuous) t-norms in the
latter sense, namely residuated commutative integral monoidal operations over chains. More-
over, the study of those structures has revealed and exploited deep connections with other
well-known algebraic structures, such as lattice-ordered Abelian groups [76, 14]. Therefore,
results and construction methods for those generalized t-norms can also be of interest not
only for researchers on technical aspects of t-norms but also for algebraists working on re-
lated structures. Thus, this paper has these two intended audiences, and it can be considered
both as a survey and a position paper. First, it has a survey nature because we will offer
a summary of the state of the art on the study of linearly ordered algebras for fuzzy logics
with a monoidal operation of the mentioned type. Second, our advocation of this particular
kind of generalized t-norms as an interesting field from both the logical and algebraic points
of view, with plenty of mathematically difficult and challenging open problems, makes it a
position paper as well. Finally, the presentation will be also accompanied with some results,
observations and examples that will complement the exposition of the problems.

The paper is organized as follows. After this introduction, Section 2 deals with continu-
ous t-norms and their generalization, BL-chains. We summarize the complete knowledge of
continuous t-norms and BL-chains over finite chains, present a general structural description
of all BL-chains and discuss its limitations when trying to describe algebras over the rational
unit interval. Section 3 deals with the much more difficult case of left-continuous t-norms
and MTL-chains. We describe the partial available knowledge as regards to the attempts of
understanding their structure and the methods to construct families of MTL-chains. Finally,
in Section 4 we briefly discuss a potential alternative of linking the generalized notions of con-
tinuity and left-continuity to the order topology and show the problems of such an approach.
We end up with some conclusions and remarks.

2 Continuous t-norms and BL-chains

2.1 A refresher on the structure of continuous t-norms

For the sake of the reader convenience, we start with recalling some basic facts on the structure
of continuous t-norms. For full details, the reader is referred to the exhaustive monograph on
t-norms [61]. First we collect in the following proposition some well-known basic properties
of a t-norm and its residuum.

Proposition 2.1. Let ∗ be a t-norm. Then the following properties hold:

• ∗ has a residuum ⇒∗ if, and only if, ∗ is left-continuous (Left-continuity)

• If ∗ has a residuum, then for every a, b ∈ [0, 1] a ≤ b if, and only if, a⇒∗ b = 1 (Order
and residuum)

• If ∗ has a residuum, then for every a, b ∈ [0, 1] max{a⇒∗ b, b⇒∗ a} = 1 (Prelinearity)

• If ∗ has a residuum, then for every a, b ∈ [0, 1] max{a, b} = min{(a ⇒∗ b) ⇒∗ b, (b ⇒∗
a)⇒∗ a} (Definability of maximum)
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• Assume ∗ is a left-continuous t-norm. Then, ∗ is continuous if, and only if, it is
divisible (i.e. if a < b there exists c such that a = b ∗ c), or equivalently, if and only
if the t-norm and its residuum satisfy the divisibility equation: for every a, b ∈ [0, 1],
a ∗ (a⇒∗ b) = min{a, b} (Divisibility)

Therefore, given a left-continuous t-norm ∗, the structure [0, 1]∗ = 〈[0, 1], ∗,⇒∗,min,max, 0, 1〉
is a residuated lattice satisfying the properties of prelinearity and definability of the maximum
and, if ∗ is also continuous, the property of divisibility.

There are three main examples of continuous t-norms:

1.  Lukasiewicz t-norm: a ∗ L b = max{0, a+ b− 1}

2. Product t-norm: a ∗Π b = ab (the usual product of real numbers)

3. Minimum (or Gödel) t-norm: a ∗G b = min{a, b}

Their residua are respectively the following:

a⇒ L b =
{

1 if a ≤ b,
1− a+ b otherwise.

a⇒Π b =
{

1 if a ≤ b,
b/a otherwise.

a⇒G b =
{

1 if a ≤ b,
b otherwise.

The residuated lattices that they define are denoted respectively as [0, 1] L, [0, 1]Π and
[0, 1]G.

They are the most prominent examples of continuous t-norms because it is possible to
describe all continuous t-norms in terms of these three distinguished ones by using the notion
of ordinal sum. This notion was born in the field of ordered semigroups (see [16, 17, 33]). In
the particular case of t-norms, the definition is the following (see e.g. [49]):

Definition 2.2. Let {[ai, bi] | i ∈ I} be a countable family of closed subintervals of [0, 1]
such that their interiors are pairwise disjoint. For every i ∈ I, let ∗i be a t-norm defined on
[ai, bi]2. The ordinal sum of this family of t-norms is the operation defined as:

x ∗ y =
{
x ∗m y if ∃m ∈ I such thatx, y ∈ [am, bm],
min{x, y} otherwise.

It is straigthforward to prove that the ordinal sum of a family of continuous t-norms
is a continuous t-norm, and the ordinal sum of a family of left-continuous t-norms is a left-
continuous t-norm. In the following we briefly sketch how (independently) Mostert and Shields
([75]) and Ling ([63]) obtained a description of continuous-torms in terms of ordinal sums of
the three basic ones.

Proposition 2.3. Let ∗ be a continuous t-norm and u ∈ [0, 1] an idempotent element (i.e.
u ∗u = u). Then, for every a, b ∈ [0, 1] such that a ≤ u ≤ b, we have a ∗ b = a. Therefore, the
restrictions of ∗ to [0, u]2 and to [u, 1]2 are continuous t-norms and ∗ is their ordinal sum.
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Theorem 2.4 ([75, 63]). Let ∗ be a continuous t-norm. Then the set of its idempotent
elements is a closed subset of [0, 1], and thus, its complement is the union of a countable
family of pairwise disjoint open intervals. Moreover, if I(∗) denotes the family of the closures
of these intervals, then:

(i) For every interval I ∈ I(∗), the restriction of ∗ to I2 is isomorphic to ∗Π if it does not
have any nilpotent element, or to ∗ L otherwise.

(ii) If a, b ∈ [0, 1] and there is no I ∈ I(∗) such that a, b ∈ I, then a ∗ b = min{a, b}.

Thus, every continuous t-norm can be decomposed as an ordinal sum of the three basic
ones.

2.2 BL-chains as a generalization of continuous t-norms

By Proposition 2.1, continuous t-norms are algebraically characterized by residuation and
divisibility properties. Following this idea and with the goal of obtaining an algebraic se-
mantics for BL logic, Hájek introduces in [41] BL-algebras as bounded commutative integral
residuated lattices satisfying the following two equations:

• Prelinearity: (x→ y) ∨ (y → x) ≈ 1.

• Divisibility: x&(x→ y) ≈ x ∧ y.

Thus, the algebraic structures defined by continuous t-norms are exactly the BL-algebras
over [0, 1]. There are some distinguished subclasses of BL-algebras:

Definition 2.5. Let A be a BL-algebra.

• A is an MV-algebra if it satisfies the involution equation: x ≈ (x→ 0)→ 0.

• A is a Π-algebra if it satisfies the cancellativity equation: (y → 0)∨ ((y → x&y)→ x) ≈
1.

• A is a G-algebra if it satisfies the contraction equation: x ≈ x&x.

Since they equationally given, these classes of algebras are in fact varieties. Observe that
[0, 1] L, [0, 1]Π and [0, 1]G are respectively an MV-algebra, a Π-algebra and G-algebra.

The property of prelinearity allows to prove the following proposition which shows that
the study of BL-algebras (and any of their subvarieties such as MV-algebras, Π-algebras or
G-algebras) can be reduced to the study of the linearly ordered ones.

Proposition 2.6 ([41]).

• Every BL-algebra is a subdirect product of linearly ordered BL-algebras (which we will
call BL-chains).

• Every variety of BL-algebras is generated by its linearly ordered members (its chains).

We can see the monoidal operation of BL-chains as a natural generalization of the notion
of continuous t-norm over arbitrary totally ordered sets. In order to deal with this kind of
structures it will be very useful to recall a couple of constructions that show a strong relation
between Abelian `-groups and both MV-algebras and Π-algebras:
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1. Mundici’s Γ functor: Chang introduced in [9] a certain transformation to show an
equivalence between MV-chains and totally ordered Abelian groups. Mundici extended
the construction in [76] to a functor that yields an equivalence of categories between
the category of Abelian `-groups with strong unit and the category of MV-algebras. It
is defined as follows. Given an Abelian `-group G = 〈G,∧,∨,+,−, 0〉 and a strong unit
u ∈ G (i.e. an element u ≥ 0 such that for every g ∈ G there exists a natural number
n ≥ 1 such that g ≤ nu), it is defined an MV-algebra Γ(G, u) = 〈{a ∈ G | 0 ≤ a ≤
u},&,→,∧,∨, 0, u〉 with the operations:

a&b = 0 ∨ (a+ b− u)
a→ b = u ∧ (u− a+ b).

Moreover, it is proved that for every MV-algebraA there is a unique (up to isomorphism)
Abelian `-group with strong unit 〈G, u〉 such that A ∼= Γ(G, u). For instance, if R
denotes the additive group of reals, we have [0, 1] L = Γ(R, 1).

2. Cignoli-Torrens’ N functor: Similarly to the previous case, in [14] it is introduced a
functor that yields an equivalence of categories between the category of Abelian `-groups
and a certain (full) subcategory of Π-algebras,4 which contains all linearly ordered Π-
algebras. It is defined as follows. Given an Abelian `-group G = 〈G,∧,∨,+,−, 0〉 its
negative cone is the set G− = {a ∈ G | a ≤ 0}. We add to a G− a new element ⊥ and
define a Π-algebra N(G) = 〈G− ∪ {⊥},&,→,∧,∨,⊥, 0〉 where:

a&b =
{
a+ b if a, b ∈ G−,
⊥ otherwise.

a→ b =


0 ∧ (b− a) if a, b ∈ G−,
0 if a = ⊥,
⊥ if a ∈ G− and b = ⊥

Then we have that for every Π-algebra A in the subcategory (hence for every Π-chain
in particular), there is a unique (up to isomorphism) Abelian `-group G such that
A ∼= N(G). For instance, [0, 1]Π ∼= N(R).

To study the structure of BL-chains we also have at our disposal two decomposition
theorems. The first one is based on the already seen decomposition of a continuous t-norm
as ordinal sum of the three basic continuous t-norms. Namely, this decomposition has been
generalized in [42, 13] by showing that every BL-chain is an ordinal sum of MV-chains, Π-
chains and G-chains, or a subalgebra of such an ordinal sum obtained by removing some
idempotent elements.

The second decomposition theorem for BL-chains states that every BL-chain is an ordinal
sum of Wajsberg hoops and, although it is less known, it has some advantages so we will
next summarize it. All results of this section about hoops and the decomposition theorem
are taken from [5, 2, 1].

4Actually, it is the subcategory of those Π-algebras A satisfying the following condition: for each x ∈ A, if
x > 0 then ¬x = 0.
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Definition 2.7. An algebraic structure A = 〈A,&,→, 1〉 is a hoop if & is a commutative
monoidal operation with 1 as neutral element, and → is a binary operation satisfying for all
a, b, c ∈ A:

(i) a→ a = 1 ,
(ii) a&(a→ b) = b&(b→ a),
(iii) a&b→ c = a→ (b→ c)

Moreover, an order relation on A can be defined as: a ≤ b iff a→ b = 1.
A hoop A is called prelinear.5 if it further satisfies:

(iv) (a→ b)→ c ≤ ((b→ a)→ c)→ c

A hoop A is Wajsberg if (a→ b)→ b = (b→ a)→ a for every a, b ∈ A. A is cancellative if
a&b ≤ c&b implies a ≤ c, for every a, b, c ∈ A. A is bounded if it has a minimum element,
and unbounded otherwise. A is said to be weakly cancellative if it is either cancellative or it
is bounded with a minimum element 0 and a&b ≤ c&b 6= 0 implies a ≤ c, for every a, b, c ∈ A.

Cancellative hoops are exactly unbounded Wajsberg hoops, and all Wajsberg hoops are
prelinear. The order of a prelinear hoop defines a lattice structure where a ∧ b = a&(a→ b)
and a ∨ b = ((a → b) → b) ∧ ((b → a) → a). Observe that all linearly ordered hoops are
prelinear.6 Moreover, an easy computation shows that → is the residuum of &. In fact, a
prelinear hoop satisfies the same conditions than a BL-algebra except for the lower bound
whose existence is not postulated in a hoop. For example, in the corresponding fragment of
the language, if we remove the bottom element in [0, 1]Π we obtain a cancellative hoop, and
if we remove bottom element bound in [0, 1]G we obtain a prelinear hoop. Observe that any
BL-chain is, actually, a bounded prelinear hoop; in particular (again in the 0-free fragment
of the language) [0, 1] L is a bounded totally ordered Wajsberg hoop.

The notion of ordinal sum also extends to hoops but it needs some modification. It was
first introduced in [29] for ordinal sums of two hoops and then generalized in [2] to sums of
arbitrary families of hoops.

Definition 2.8. Let 〈I,≤〉 be a totally ordered set. For all i ∈ I, let Ai be a totally ordered
hoop such that for i 6= j, Ai ∩ Aj = {1}. Then

⊕
i∈I Ai (the ordinal sum of the family

{Ai | i ∈ I}) is the structure whose universe is
⋃

i∈I Ai and whose operations are:

a&b =


a&Aib if a, b ∈ Ai,

b if a ∈ Ai and b ∈ Aj \ {1} with i > j,

a if a ∈ Ai \ {1} and b ∈ Aj with i < j.

a→ b =


a→Ai b if a, b ∈ Ai,

b if a ∈ Ai and b ∈ Aj with i > j,

1 if a ∈ Ai \ {1} and b ∈ Aj with i < j.

For every i ∈ I, Ai is called a component of the ordinal sum.
5In the literature these structures were originally called basic hoops. However, since the relevant property

in defining this class of hoops is prelinearity, we prefer to call them prelinear hoops.
6An easy computation shows that this prelinearity condition, after the definition of the order, is equivalent

to the prelinearity condition on the t-norm setting, i.e. to the condition (a→ b)∨ (b→ a) = 1 for all a, b ∈ A.
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Definition 2.9. A totally ordered hoop is indecomposable if it is not isomorphic to any
ordinal sum of two non-trivial totally ordered hoops.

Observe that the difference between this notion of ordinal sum and the previous one is the
identification of the top element of each component in a unique top element of the ordinal
sum. It is also important to notice that in this case the components of the decomposition are
subalgebras of the ordinal sum, which was not true in the original notion of ordinal sum.

Now we turn our attention to Wajsberg hoops since they play a basic role in the decom-
position theorem. Basic examples of linearly ordered Wajsberg hoops are:

•  L, defined over [0, 1] by the  Lukasiewicz t-norm and its residuum (bounded),

• C, defined over (0, 1] by the product t-norm and its residuum (cancellative and un-
bounded), and

• 2, the two-element Boolean algebra defined over {0, 1}.

It is clear that  L, C and 2 are indecomposable Wajsberg hoops. Actually, this is a property
of any of the so-called Archimedean hoops, which are defined next using the following notion
of Archimedean component (see e.g. [33]).

Definition 2.10. Let A be a totally ordered hoop and let ∼ be the following relation:

a ∼ b if, and only if, for some n ∈ N, either an ≤ b ≤ a or bn ≤ a ≤ b

Then ∼ is an equivalence relation and the corresponding classes are called Archimedean com-
ponents. The component containing the element a ∈ A will be denoted by [a]∼.

Definition 2.11. A totally ordered hoop A is Archimedean if their Archimedean components
are just {1} and A \ {1}.

The following straightforward proposition, which is part of the folklore, gives the inde-
composability of not only  L, C and 2 but of all totally ordered Archimedean hoops:

Proposition 2.12. Let A be a totally ordered hoop. If A is Archimedean, then it is inde-
composable.

Next proposition contains some basic properties of Wajsberg hoops.

Proposition 2.13. For every Wajsberg hoop A the following conditions hold:

• (1) If A is bounded, then it is the 0-free reduct of an MV-algebra and it is weakly
cancellative.

• (2) If a ∈ A \ {1} is an idempotent element, then it is the bottom element of the hoop.

• (3) The monoidal operation is continuous with respect to the order topology, i.e. if
{ai | i ∈ N} is a monotonic sequence in A that has limit α ∈ A, then for every b ∈ A:

(i) if the sequence is non-increasing (i.e. α =
∧
ai) then

∧
(b&ai) exists and b&α =∧

i(b&ai),

(ii) if the sequence is non-decreasing (i.e. α =
∨
ai) then

∨
(b&ai) exists and b&α =∨

i(b&ai).

10



Proof. (1) is obvious. To prove (2) take into account that if an idempotent element a is
not the minimum, there must exists an element b < a and thus (a → b) → b = 1 and
(b→ a)→ a = a in contradiction with the equation defining Wajsberg hoops. As regards to
(3), if α belongs to the sequence, the result is obvious. If the sequence is non-decreasing then
the result is also true because & is infinitely distributive with respect to ∨. Suppose that the
sequence is non-increasing, α does not belong to the sequence and the conclusion is not true,
i.e. b&α <

∧
(b&ai) = d > 0 (obviously it is impossible to be greater). By divisibility there

must exist an element β such that both b&β = d, and by weak cancellation this implies that
α < β < ai for all ai belonging to the sequence, which is impossible.

Notice that the proposition implies in particular that all Wajsberg hoops are weakly
cancellative. We can state now the main result in [2] which is the decomposition theorem.

Theorem 2.14 ([2]). Every BL-chain is an ordinal sum of (indecomposable) linearly ordered
Wajsberg hoops.

Let us compare now the decomposition based on the previous theorem with the previous
one in the case of standard BL-chains, i.e. the BL-chains defined over [0, 1] by a continuous
t-norm and its residuum.

1. For the three prominent continuous t-norms we have:

• [0, 1] L is an indecomposable Wajsberg hoop,

• [0, 1]Π is isomorphic to the ordinal sum of 2 and C, and

• [0, 1]G is isomorphic to the ordinal sum of as many 2 components as elements in
[0, 1].

2. If ∗ is an arbitrary continuous t-norm, then its decomposition as ordinal sum of Wajsberg
hoops contains (in the obvious order) as many components  L as  Lukasiewicz components
appear in the usual decomposition, as many C components as Product components
appear in the usual decomposition and as many 2 components as idempotent elements
different from the top element the t-norm ∗ has.

Example 2.15. If ∗ is the ordinal sum (in the sense of t-norms) of a  Lukasiewicz, a Product
and a Gödel component in this order, then the decomposition as Wajsberg hoops is [0, 1]∗ ∼=
 L⊕ 2⊕C⊕

⊕
i∈2ω 2.

Therefore, the indecomposable Wajsberg hoops possibly appearing in the decomposition
of a BL-chain over the real unit interval are just isomorphic copies of  L, C and 2. Moreover,
the components appearing in the decomposition are exactly the Archimedean components of
the original standard BL-chain with the top element 1. We will prove now that this situation
generalizes to all BL-chains defined over a complete totally ordered set.

Proposition 2.16. Let A be a complete BL-chain and let C be a component of the decompo-
sition of A as ordinal sum of indecomposable Wajsberg hoops. Then C is Archimedean.

Proof. First recall that, by (2) of Proposition 2.13, a Wajsberg hoop does not contain idem-
potent elements different from the bounds.

11



Suppose that C has {1} (the trivial Archimedean component) and another Archimedean com-
ponent X 6= C \ {1} which is not a singleton. If inf X = α ∈ C and this is not the infimum
of C, then by (3) of Proposition 2.13 it is clear that α has to be an idempotent element
and this is contradictory with our assumption. On the other hand if inf X = inf C then by
asssumption there must exist an element b ∈ C \ {1}, such that [1]∼ > [b]∼ > X and thus
inf[b]∼ ∈ C and it is different from the infimum of C. Thus inf[b]∼ must be idempotent which
leads to a contradiction.

Corollary 2.17. Every complete BL-chain is decomposable as the ordinal sum of its
Archimedean components.

We move now to the case of the rational unit interval. In that case the order of the chain
is not complete and thus Proposition 2.16 does not apply. The following examples show that
we can find indecomposable Wajsberg hoops over the rational unit interval which are not
Archimedean.

Example 2.18. Let HΠ be the hoop defined over (0, 1] ∩ Q by the usual product of rational
numbers (i.e. the 0-free reduct of the standard Π-chain [0, 1]Π restricted to the rationals without
zero). Take a cut in the interior of the rational unit interval defined by an irrational α ∈ (0, 1)
and take the isomorphic copy of HΠ over Q ∩ (α, 1] (denote by × its monoidal operation).
Take an involutive negation n : Q∩ [0, 1]→ Q∩ [0, 1] such that n(Q∩ (α, 1]) = Q∩ [0, α) and
define the monoidal operation over Q ∩ [0, 1] as,

x ∗ y =


x× y, if x, y > α
n(x→× n(y)), if x > α, and y < α
n(y →× n(x)), if x < α, and y > α
0, otherwise

where →× refers to the residuum of ×. It is an MV-chain. The elements of this algebra are
divided in two groups: the so-called infinite elements (those belonging to Q∩(α, 1]), which form
a filter, and the so-called infinitesimal elements (the elements of Q∩[0, α)) and x∗y = 0 for all
infinitesimals x, y. Clearly, this Wajsberg hoop is indecomposable and has three Archimedean
components: {1},Q ∩ (α, 1) and Q ∩ [0, α).7

Example 2.19. Take the lexicographic product of the additive ordered Abelian group of in-
tegers Z = 〈Z,+,−, 0,≤〉 and the multiplicative ordered Abelian group of positive rationals
Q+ = 〈Q+, ·, ()−1, 1,≤〉, and denote it by Z ×lexQ+. Notice that its neutral element is 〈0, 1〉.
Its negative cone, i.e. the restriction of the algebra over the elements which are smaller than
the neutral element,8 is a cancellative Wajsberg hoop with three Archimedean components
{〈0, 1〉}, {〈0, r〉 | r ∈ Q ∩ (0, 1]} and {〈−k, r〉 | k ∈ N \ {0}, r ∈ Q+}. Take finally a cut in
Q ∩ [0, 1] defined by an irrational number α ∈ (0, 1) and take the isomorphic transformation
of the three Archimedean components into the three intervals {1}, Q ∩ (α, 1) and Q ∩ (0, α),
respectively. The resulting structure is an indecomposable and cancellative Wajsberg hoop over
the rational unit interval that has three Archimedean components.

7This example can be isomorphically presented by considering Γ(Z ×lex Q, 〈1, 0〉), where Z and Q denote
respectively the additive groups of integers and rationals, and Z ×lex Q denotes their lexicographic product.

8Observe that by doing this we are performing the same operation as in the previously introduced functor
N but without adding a bottom element.
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We focus now on the study of indecomposable Wajsberg hoops over the rational unit
interval and specially on the characterization of those of them that are restrictions of inde-
composable Wajsberg hoops over the reals.

Proposition 2.20. Let A be an Archimedean Wajsberg hoop over a countable chain. Then:

1. If A is bounded (i.e. the reduct of an MV-chain), then it is isomorphic to a subalgebra
of  L.

2. If A is unbounded (i.e. a cancellative totally ordered hoop), then it is isomorphic to a
subalgebra of C.

Proof. Suppose that A is an MV-algebra. By Mundici’s functor A is isomorphic to the MV-
chain Γ(G, u) for some totally ordered Abelian group G and some strong unit u ∈ G. Actually
(see [76]) they can be described in the following way. Recall that in an MV-algebra it is usual
to define a negation operation as ¬a = a→ 0 and a dual operation of & as a⊕b = ¬(¬a&¬b).
Then G is the linearly ordered Abelian group defined by:

• Universe: G = {〈n, a〉 | n ∈ Z, a ∈ A \ {0}}

• Order: the lexicographic order over G

• Operations: the sum is defined as,

〈n, a〉+ 〈m, b〉 =
{
〈n+m, a⊕ b〉, if a⊕ b < 1
〈n+m+ 1, a&b〉, otherwise

and the inverse is defined as,

−〈n, a〉 =
{
〈−n− 1,¬a〉, if 0 < a < 1
〈−n, 0〉, if a = 0.

An easy computation shows that if A has only two Archimedean components, then the group
G is Archimedean and thus by Hölder’s Theorem (see e.g. [37]) it is isomorphic to a subgroup
of the additive group R of the real numbers with the usual order and sum operation. Then
A is isomorphic to a subalgebra of Γ(R, 1) which coincides with the standard MV-chain over
the real unit interval.

Suppose now that A is a cancellative hoop. Adapting slightly the functor N to cancellative
hoops, we have that A is isomorphic to the negative cone of a linearly ordered Abelian group
G. Since A has only two Archimedean components, G must be an Archimedean group and
thus, again by Hölder’s Theorem, it is isomorphic to a subgroup of R. Then the result just
follows from the fact that the negative cone of R is isomorphic to C.

Corollary 2.21. Let A be a Wajsberg hoop over a countable chain. A is Archimedean if,
and only if, it is embeddable into  L or C.

Nevertheless, while in the case of hoops over the reals there are, up to isomorphism, only
three Archimedean Wajsberg hoops, in the rational case the situation is much more complex.
Next we give examples of pairs of isomorphic Archimedean linearly ordered Abelian groups
over the reals whose restrictions to the rationals are not isomorphic, even if they are still
Archimedean.
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Example 2.22. Consider again the additive ordered group of reals R = 〈R,+,−, 0,≤〉 and
the multiplicative group of positive reals R+ = 〈R+, ·, ()−1, 1,≤〉 with the natural total order
as well. They are Archimedean and, as it is well known, isomorphic. Their restriction
to the rationals are also Archimedean linearly ordered Abelian groups, 〈Q,+,−, 0,≤〉 and
〈Q+, ·, ()−1, 1,≤〉, but they are not isomorphic. The usual isomorphisms between the groups
over the reals (the exponential and the logarithmic transformations) are not well defined over
the rationals. Moreover, the fact that the additive group is divisible while the multiplicative is
not9 implies that there cannot be such an isomorphism. By applying the functors Γ and N to
these groups we obtain respectively an example in the case of bounded Wajsberg hoops and in
the case of cancellative hoops of a pair of isomorphic Archimedean hoops over the reals that
are not isomorphic anymore when restricted to the rationals.

The example suggests that, unlike what happens in the real case, there could be a huge
number of non-isomorphic Archimedean Wajsberg hoops over the rationals. Therefore, we
can consider the following interesting and difficult question:

Open problem: classify the isomorphism classes of Archimedean Wajsberg hoops over the
rationals, or more generally, classify the isomorphism classes of indecomposable Wajsberg
hoops over the rationals.

Of course, thanks to the representation in ordinal sums, a solution to this problem would
bring a complete description of all possible generalizations of the notion of continuous t-
norm over the rationals. Actually, due to Hölder’s Theorem, the first part of the problem is
equivalent to that of classifying dense subgroups of the additive ordered group of the reals
R. It is well-known (see e.g. [40, Lemma 4.21]) that subgroups of R are either dense or
discrete (and then isomorphic to the subgroup of integers). For those dense groups which
are subgroups of the additive ordered group of the rationals Q there is a classification due to
Bauer (see e.g. [32, Section 42]). Therefore, it only remains the case of dense subgroups of R
which are not subgroups of Q. Here an algebraic classification of their isomorphism classes
is not available, but we can still know something about the finitely generated ones. Indeed,
since they are torsion-free, their reducts in the language of groups (i.e. disregarding the order)
are always isomorphic to Zr = 〈Zr,+,−,0〉 for some r ≥ 1 (see e.g. [32, Theorem 10.4]), and
hence the problem corresponds to that of describing all possible Archimedean total orders
on Zr. Now all such orders, whether Archimedean or not, are described in [62, Section 6.3].
On the other hand, the dense 1-generated subalgebras of the standard MV-algebra [0, 1] L are
described in [34], showing that the subalgebra 〈a〉 generated by an irrational number a is dense
and 〈a〉 ∼= 〈b〉 for an irrational b 6= a iff a = 1− b. Thus there are uncountable many different
1-generated indecomposable Archimedean (bounded) Wajsberg hoops over the rationals.

As for the general non-Archimedean case, we can use Hahn’s Theorem (see e.g. [37]) to
conclude that indecomposable Wajsberg hoops over the rationals are still closely related to
R by means of an embedding into a lexicographic product:

Theorem 2.23. Let A be a Wajsberg hoop over the rationals. Then:

1. If A is bounded (i.e. an MV-chain), then it is embeddable into Γ(
∏lex

i∈I R, u), for some
index set I.

9Recall that a group G = 〈G,⊕, ()−1, e〉 is said to be divisible if for every x ∈ G and every natural number
n there is y ∈ G such that y⊕ . . .n⊕y = x. This should not be confused with the previously introduced notion
of divisible t-norm.
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2. If A is unbounded (i.e. a cancellative totally ordered hoop), then it is embeddable into
N(
∏lex

i∈I R), for some index set I.

where R = 〈R,+,−, 0,≤〉 is the additive ordered group of reals,
∏lex

i∈I R denotes the lexico-
graphic product of I copies of this group, and u = 〈1, 0, . . . , 0〉 (with I components) is a strong
unit of

∏lex
i∈I R.

Moreover, if we further assume that A is finitely generated, then I can be taken with the
same cardinal as the set of Archimedean components of A.

Finally, we focus briefly on finite chains. As in the real case, the structure of such chains
is completely known for BL-chains. They can be described just by using the first notion of
ordinal sum (for BL-chains). Indeed, since there are no finite product chains (except for the
trivial one and the two-element Boolean algebra, that obviously are MV and G-chains as well),
all finite BL-chains are ordinal sums of finite MV and G-chains. Taking into account that finite
MV-chains are isomorphic to the  Lukasiewicz n-valued chains  Ln, and the obvious structure
of finite Gödel chains Gn, we obtain the following result (equivalent to the representation
theorem for finite smooth t-norms given in [69]):

Proposition 2.24. Each finite BL-chain is isomorphic to an ordinal sum of a finite subfamily
of { Ln | n ≥ 1} ∪ {Gn | n ≥ 1}.

Since for every n ≥ 2,  Ln (resp. Gn) is a subalgebra of the MV-chain (resp. the G-chain)
over the rational unit interval defined by the restriction of the  Lukasiewicz t-norm (resp. the
minimum t-norm), and hence it is also a subalgebra of [0, 1] L (resp. [0, 1]G), every non-trivial
finite BL-chain is embeddable both into a rational BL-chain and into a real BL-chain.

3 Left-continuous t-norms and MTL-chains

3.1 The problem of classifying left-continuous t-norms

We have argued in the introduction that residuation is an essential algebraic property that
must be required to have good semantics for fuzzy logical systems based on modus ponens
rule. We have also seen that the necessary and sufficient condition for a t-norm to have a
residuum is not continuity but left-continuity. Therefore, it is definitely interesting from a
logical point of view to focus on the study of left-continuous t-norms and their generalizations
to arbitrary classes of linearly ordered sets.

Unfortunately, the knowledge on left-continuous t-norms is drastically limited in compar-
ison to the nice description in the continuous case that we have seen. So far no structural
theorem that would allow to classify them has been found and the only available pieces of
knowledge are several families of left-continuous t-norms, some constructive techniques to
obtain those families, some decomposition theorems (that are not strong enough to yield a
classification) and some studies of particular features of these t-norms such as the description
of their sets of continuity, sets of determination or their behavior under convex combinations.
In fact, for a long period, the difficulty of the problem of finding a general description, in the
style of Mostert and Shields theorem for continuous t-norms, has been perceived as nearly
overwhelming; let us just quote Jenei’s words from [54]: “the establishing of any structural
theorem seems to be hopeless”. Nevertheless, some very recent works suggest that there might
be some room for hope. On the one hand, more general new construction and decomposi-
tion methods, encompassing the previously known ones, have appeared: the triple rotation
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method [65, 66, 67] and some generalizations of the rotation (-annihilation) methods [88]. On
the other hand, in [87] a very general class t-norms, the so-called regular t-norms, has been
proposed and deeply studied and, although is does not exhaust the class of all left-continous
t-norms, is still a very powerful notion as we will discuss later. We will next review the state
of the art on left-continuous t-norms by giving the basic notions and results, and referring
the reader to the corresponding sources for a detailed exposition of each topic.

The first natural option one may consider when attempting to understand left-continuous
t-norms is to extend the ordinal sum representation. The operation, of course, is also defined
for such t-norms; but if we follow the proof of the representation theorem of continuous
t-norms we soon realize that it cannot be generalized to the left-continuous case. Indeed,
Proposition 2.3 already fails. Consider, for instance, Fodor’s Nilpotent Minimum t-norm:

a ∗NM b =
{

min{a, b} if a > 1− b,
0 otherwise.

Its residuum is:

a⇒NM b =
{

1 if a ≤ b,
max{1− a, b} otherwise.

Take, for example, 0.7. It is an idempotent element for ∗NM, but we have x ∗NM 0.1 = 0
for each 0.7 ≤ x ≤ 0.9. Therefore, idempotent elements do not give in general a cut point
to split a left-continuous t-norm as the ordinal sum of the piece below and the piece above.
Nevertheless, one could still use Zorn’s Lemma, and non-constructively prove that every left-
continuous has a maximal decomposition as ordinal sum. The problem with this strategy is
that there seems to be no way to classify the indecomposable pieces (in particular, all t-norms
with an involutive negation are indecomposable and they form already a hardly describable
class), so the decomposition becomes rather useless.

Having disregarded this dead-end street, scholars have concentrated on providing some
techniques to obtain at least some families of left-continuous (and in general non continuous)
t-norms. The main ones are the following:

1. Annihilation. Inspired by the definition of Nilpotent Minimum t-norm, Jenei in-
troduced in [46] the annihilation technique. Given any continuous t-norm ∗ and an
involution n on [0, 1], he defined the n-annihilation of ∗ as the operation:

a ∗n b =
{
a ∗ b if a > n(b),
0 otherwise.

This operation is not a t-norm in general. For instance, if ∗ = ∗Π and n(x) = 1 − x,
then ∗n is not a t-norm because it is not associative. Observe, on the other hand, that
continuity in general will be lost, but left-continuity is preserved. In fact, in [46] it is
proved that ∗n is a (left-continuous) t-norm iff it is isomorphic to ∗NM, to ∗ L or to the
t-norm

a ◦ b =


0 if a ≤ 1− b,
1
3 + a+ b− 1 if a, b ∈ [1

3 ,
2
3 ] and a > 1− b,

min{a, b} otherwise.
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In other words, this method allows to obtain an involutive left-continuous t-norm only
if the initial one is an ordinal sum of ∗G, ∗ L and ∗G in this order (the extremal cases
are ∗ L which coincides with its own annihilation, and ∗G whose annihilation is ∗NM).

Cignoli et al. [12] extended the method by allowing n to be any weak negation function,
non necessarily involutive. They describe the family of left-continuous t-norms that
can be obtained in this way. In particular it contains the so-called Weak Nilpotent
Minimum t-norms (introduced in [24]) which are the annihilations of ∗G by arbitrary
weak negation functions.

2. Rotation. A different method to obtain involutive left-continuous t-norms was intro-
duced by Jenei in [47] in the following way. Let ∗ be a left-continuous t-norm such that
either (i) it has no zero divisors, or (ii) there exists c ∈ [0, 1] such that for every zero
divisor a of ∗, a⇒∗ 0 = c. Let n be an arbitrary involutive negation with fixpoint β, and
σ an arbitrary order-preserving bijection from [β, 1] to [0, 1]. With these ingredients,
the rotation of ∗ is the binary operation:

a ? b =


σ−1(σ(a) ∗ σ(b)), if a, b > β
n(σ−1(σ(a)⇒∗ σ(n(b)))), if a > β, b ≤ β and n(a) < b
n(σ−1(σ(b)⇒∗ σ(n(a)))), if a ≤ β, b > β and n(a) < b
0, otherwise

Then ? is a left-continuous t-norm and n is its negation function. For instance, ∗NM

can be obtained as the rotation of ∗G w.r.t. the involution n(x) = 1− x.

3. Rotation-annihilation. A sort of combination of the two previous methods was intro-
duced by Jenei as well [48]. Let ∗1 be a left-continuous t-norm. Let ∗2 be an arbitrary
involutive left-continuous t-norm and let n be an arbitrary involutive negation with
fixpoint β, α an arbitrary number in [β, 1), σ an order-preserving bijection from [α, 1]
to [0, 1], and ρ an order-preserving bijection from [n(α), α] to [0, 1] (if α 6= β). Moreover
we assume that (i) if α = β, ∗1 has either no zero divisors or there exists c ∈ [0, 1]
such that for every zero divisor a of ∗1, a ⇒∗1 0 = c, or (ii) if α 6= β, ρ ◦ n ◦ ρ−1

coincides with the negation of ∗2 and ∗1 has no zero divisors. With these ingredients,
the rotation-annihilation of ∗1 and ∗2 is the binary operation:

a ? b =



σ−1(σ(a) ∗1 σ(b)), if a, b ≥ α
n(σ−1(σ(a)⇒∗1 σ(n(b)))), if a ≥ α, b ≤ n(α) and n(a) < b
n(σ−1(σ(b)⇒∗1 σ(n(a)))), if a ≤ n(α), b ≥ α and n(a) < b
ρ−1(ρ(a) ∗2 ρ(b)), if a, b ∈ (n(α), α) and n(a) < b
a, if a ∈ (n(α), α), b ≥ α
b, if b ∈ (n(α), α), a ≥ α
0, otherwise

Then ? is a left-continuous t-norm and n is its negation function. Observe that when
α = β we have the rotation of ∗1.

4. Triple rotation. In very recent works Maes and De Baets have introduced and studied
a new construction method to obtain involutive left-continuous t-norms (see [65, 66]).
Let ∗ be an arbitrary left-continuous t-norm. The companion of ∗ is an auxiliar operation
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defined as a ∗′ b = sup{c ∈ [0, 1] | a ⇒∗ c ≤ b}. Let n be an arbitrary involutive
negation with fixpoint β, and σ an arbitrary order-preserving bijection from [β, 1] to
[0, 1]. Furthermore, let f : [0, 1]→ [0, 1] be the decreasing function defined by f(x) = 1
whenever x ∈ [0, β] and f(x) = σ−1(n(σ(x))) whenever x ∈ (β, 1]. If ∗ has zero divisors,
assume that ∗′ is commutative. With these ingredients, the triple rotation of ∗ is the
binary operation:

a ? b =


σ−1(σ(a) ∗ σ(b)), if a, b > β and f(a) < b
n(σ−1((σ(a)⇒∗ 0) ∗′ (σ(b)⇒∗ 0))), if a, b > β and f(a) ≥ b
n(σ−1(σ(a)⇒∗ σ(n(b)))), if a > β, b ≤ β and n(a) < b
n(σ−1(σ(b)⇒∗ σ(n(a)))), if a ≤ β, b > β and n(a) < b
0, otherwise

Then ? is a left-continuous t-norm and n is its negation function. Observe that if ∗ has
no zero divisors, then the case in the second line does never occur and the construction
coincides with rotation: for instance ∗NM is the triple rotation of ∗G w.r.t. the involution
n(x) = 1 − x. When applied to t-norms with zero divisors the method can yield
already known involutive t-norms, such as ∗ L which is the triple rotation of itself w.r.t.
the involution n(x) = 1 − x, or t-norms that cannot be obtained by means of the
previous rotation and rotation-annihilation constructions such as the rotation of ∗NM

w.r.t. n(x) = 1− x:

a ? b =


min{a, b}, if a, b > 1

2 and 3
2 − a < b

1
2 , if a, b > 1

2 and 3
2 − a ≥ b

min{a− 1
2 , b}, if a > 1

2 , b ≤
1
2 and 1− a < b

min{b− 1
2 , a}, if a ≤ 1

2 , b >
1
2 and 1− a < b

0, otherwise

Conversely, these methods can also be seen as a way to decompose left-continuous into
simpler components. Indeed, on the one hand, in [50] decomposition in terms of rotation
and rotation-annihilation is considered; in particular the author shows that every involutive
left-continuous t-norm ∗ is maximally decomposable as rotation-annihilation of some t-norms
∗1 and ∗2 (or just ∗1 when rotation is enough), i.e. when taking the minimum α providing
such a decomposition. As it happens with the ordinal sum decomposition, the limitation
of this result is the lacking of any characterization of indecomposable elements (i.e. those
t-norms ∗ admitting only the trivial decomposition, ∗ = ∗2). On the other hand, in [67] the
authors use the triple rotation as an alternative decomposition method as well, and put it into
a more general setting that allows to encompass this method together with Jenei’s rotation
and rotation-annihilation (see [67, Section 5.1]). Again, for the same reason, such a setting
is still not enough to describe all involutive left-continuous t-norms.

Another remarkable recent approach to the problem is that of Vetterlein in [87]. The
advantage of this approach is its wider scope, i.e. it does not deal only with involutive t-
norms, but with the general problem of classifying all left-continuous t-norms. He defines a
new technical notion, that of regular t-norm that allows to gain a valuable insight into the
problem. Roughly speaking, a t-norm ∗ is regular if there is a natural number n such that
for every a ∈ [0, 1] the a-translation λa(x) = x ∗ a has at most n discontinuity points, and ∗
satisfies some other additional simplicity requirements. The class of regular t-norms contains
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the basic continuous ones (∗ L, ∗Π and ∗G) and it is closed under all the construction methods
reviewed here (ordinal sum, annihilation, rotation, rotation-annihilation and triple rotation).
Therefore, pretty much all known left-continuous t-norms are actually regular.10 The interest
of this notion lies in the fact that they are enough to provide a complete semantics for MTL
logic (technically: the class of standard algebras based on regular t-norms generates the variety
of MTL-algebras) even if they are still simple enough to be described and characterized at a
large extent.

Finally, other noteworthy developments are the following: study of n-contraction prop-
erties in left-continuous t-norms (algebraically defined by x∗ n. . . ∗x = x∗ n−1. . . ∗x) and their
corresponding logics [11, 45], the set of continuity points of a left-continuous t-norms [59, 55],
subsets of [0, 1]2 that determine the structure of the whole left-continuous t-norm [53, 55], con-
vex combinations of left-continuous t-norms [54], weak nilpotent minimum t-norms and their
corresponding logics [80], cancellativity properties [68], extension of rotation and rotation-
annihilation methods to provide slightly bigger families of left-continuous t-norms [88], and
a latter-day contribution in [82] where associativity of t-norms is characterized in terms of
Reidemeister closure condition of 3-webs and it yields yet a new method to construct left-
continuous t-norms.

3.2 MTL-chains as a generalization of left-continuous t-norms

As we have seen, the algebraic structures that arise from the property of residuation are
residuated lattices. In generalizing the notion of continuous t-norm one adds two properties
to bounded commutative integral residuated lattices: prelinearity and divisibility. In fact,
divisibility was only added to obtain continuity in the real case. Therefore, if we only want
to obtain residuated structures over chains we do not need divisibility, just prelinearity. This
motivates the definition of MTL-algebras as they were introduced in [24]:

Definition 3.1. An algebraic structure A = 〈A,&,→,∧,∨, 0, 1〉 is said to be an MTL-algebra
if:

• 〈A,∧,∨, 0, 1〉 is a bounded lattice,

• 〈A,&, 1〉 is an ordered commutative monoid with neutral element 1,

• → is the residuum of & (or & and → form and adjoint pair), i.e. for every a, b, c ∈ A:
a&c ≤ b if and only if c ≤ a→ b.

• For every a, b ∈ A, (a→ b) ∨ (b→ a) = 1.

A negation operation ¬ is defined by putting, for every a ∈ A, ¬a = a→ 0. If ¬ is involutive,
i.e. if ¬¬a = a for every a ∈ A, then A is called an IMTL-algebra.

Thus, they are the variety of prelinear bounded commutative integral residuated lattices.
Prelinearity property is enough to prove the following crucial facts:

Proposition 3.2 ([24]).

• Every MTL-algebra is a subdirect product of linearly ordered MTL-algebras (which we
will call MTL-chains).

10Examples of non-regular t-norms are those left-continuous t-norms with a-translations having infinitely-
many discontinuity points introduced in [58].
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• Every variety of MTL-algebras is generated by its linearly ordered members (its chains).

In particular, the variety of all MTL-algebras is generated by the class of all MTL-chains,
i.e. all linearly ordered bounded commutative integral residuated lattices.

Therefore, again, the problem of describing MTL-algebras reduces to that of understand-
ing the structure of MTL-chains. However, as they contain in particular those based on
left-continuous t-norms, this is a problem of amazing complexity and only some partial re-
sults are available.

The algebraic structures that will play now an analogous role to that of hoops in the BL
case are the so-called semihoops.

Definition 3.3 ([26]). An algebra A =
〈
A,&,→,∧, 1

〉
is a semihoop if:

• A =
〈
A,∧, 1

〉
is an inf-semilattice with upper bound.

•
〈
A,&, 1

〉
is a commutative monoid isotonic w.r.t. the inf-semilattice order ≤.

• For every a, b ∈ A, a ≤ b iff a→ b = 1.

• For every a, b, c ∈ A, a&b→ c = a→ (b→ c).

An operation ∨ is defined as: a∨ b = ((a→ b)→ b)∧ ((b→ a)→ a). A is called prelinear
if for every a, b, c ∈ A, (a → b) → c ≤ ((b → a) → c) → c. If A has a minimum element,
then it is called a bounded prelinear semihoop (i.e. an MTL-algebra).

Notice that a prelinear semihoop A is a prelinear hoop if, and only if, it satisfies a&(a→
b) = b&(b→ a) for every a, b ∈ A. Every totally ordered semihoop is prelinear.

The notion of ordinal sum of totally ordered hoops is extended in the natural way to
totally ordered semihoops, and the same with the notion of indecomposability. The following
results from [72] extend the decomposability theorem to the whole class of MTL-chains:

Theorem 3.4. For every MTL-chain A, there is a maximum decomposition as ordinal sum
of indecomposable totally ordered semihoops, with the first one bounded.

Corollary 3.5. Let A be an MTL-chain. If the partition {[a]∼ | a ∈ A \ {1}} given by the
Archimedean classes gives a decomposition as ordinal sum, then it is the maximum one.

Definition 3.6. An MTL-chain is totally decomposable if, and only if, the partition given
by its Archimedean classes gives a decomposition as ordinal sum.

Therefore, for all we have seen, finite BL-chains and BL-chains defined over the real unit
interval (or, in general, over a complete chain) are totally decomposable, while BL-chains
defined over the rationals are not.

Theorem 3.4 states a decomposition result for MTL-chains that in a sense generalizes the
corresponding result for BL-chains. Unfortunately, here the result is by far not as useful as
it was in the BL case. We can summarize the differences as follows:

1. The theorem for BL-chains gives a decomposition as ordinal sum of indecomposable
Wajsberg hoops (thus, weakly cancellative hoops). In the MTL case, we can find inde-
composable semihoops which are not weakly cancellative (for instance, the involutive
MTL-chains). The variety generated by MTL-chains decomposable as ordinal sum of
weakly cancellative semihoops has been studied in [72] and proved to be different from
the variety of all MTL-chains.
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2. For BL-chains, the indecomposable Wajsberg hoops are known in the case of finite and
real chains. There is also some partial knowledge on the indecomposable Wajsberg
hoops over the rationals. Nevertheless, we do not have such kind of knowledge for
indecomposable semihoops.

Another strategy to address the MTL problem has consisted in generalizing some construc-
tion/decomposition methods for left-continuous t-norms to the framework of MTL-chains. In
[52] rotation and rotation-annihilation constructions are generalized to even weaker structures.
For MTL-chains the corresponding definitions are the following:

Definition 3.7. Let A be a prelinear semihoop. The disconnected rotation of A is an algebra
denoted A◦ and defined as follows. Let A × {0} be a disjoint copy of A. For every a ∈ A
we write a′ instead of 〈a, 0〉. Consider 〈A′ = {a′ : a ∈ A},≤〉 with the inverse order and let
A◦ = A∪A′. We extend these orderings to an order in A◦ by putting a′ < b for every a, b ∈ A.
Finally, we take the following operations in A◦: 1A

◦
= 1A, 0A

◦
= (1A)′, ∧A◦ is the minimum

w.r.t. the ordering, ∨A◦ is the maximum w.r.t. the ordering, and ¬A◦, &A
◦

and →A◦ are
respectively defined as

¬A◦a =
{
a′ if a ∈ A
b if a = b′ ∈ A′

a&A
◦
b =


a&Ab if a, b ∈ A
¬A◦(a→A ¬A◦b) if a ∈ A, b ∈ A′ and ¬A◦a 6≥ b
¬A◦(b→A ¬A◦a) if a ∈ A′, b ∈ A and ¬A◦a 6≥ b
0A

◦
otherwise

a→A◦ b =


a→A b if a, b ∈ A
¬A◦(a&A¬A◦b) if a ∈ A, b ∈ A′

1A
◦

if a ∈ A′, b ∈ A
¬A◦b→A ¬A◦a if a, b ∈ A′.

It is clear from this definition that the algebra introduced in Example 2.18 is actually
isomorphic to the disconnected rotation of the cancellative hoop HΠ.

Definition 3.8. Let A be an MTL-algebra satisfying one of the following conditions:

• A does not have zero divisors.11

• ∃c ∈ A such that ∀a ∈ A zero divisor, ¬a = c.

Then, the connected rotation of A is denoted A? and defined as follows.
Take

〈
A′ = {a′ : a ∈ A, a 6= 0A},≤

〉
, a disjoint copy of A \ {0A} with the inverse order, and

define ¬A?
0A = 0A and all the operations as in the disconnected rotation.

Proposition 3.9. Disconnected rotations are IMTL-algebras without negation fixpoint and
connected rotations are IMTL-algebras with negation fixpoint.

11a ∈ A \ {0} is a zero divisor if there exists b ∈ A \ {0} such that a&b = 0.
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Observe that the rotation method for t-norms in the previous subsection is a particular case
of this connected rotation, where the definition of operations was slightly more complicated
due to the necessary rescalements of t-norms. These rotation methods have been used in
[78, 79] where a theory of perfect and bipartite MTL-algebras is developed and perfect IMTL-
algebras are characterized as disconnected rotations of prelinear semihoops, while perfect
IMTL-algebras with an additional negation fixpoint are characterized as connected rotations
of prelinear semihoops without zero divisors.

Definition 3.10. Let A be a prelinear semihoop and B be an IMTL-algebra such that A∩B =
∅. An algebra C, called the disconnected rotation-annihilation of A and B, is defined as
follows. Let 〈A′ = {a′ : a ∈ A},≤〉 be a disjoint copy of A as above (disjoint also with B)
endowed with the inverse ordering and let C = A ∪ A′ ∪ B. The orderings are extended to
C by letting a′ < b and b < c for every a, c ∈ A and every b ∈ B. Let C+ = A, C0 = B

and C− = A′. Finally, the following operations are defined on C: 1C = 1A, 0C = (1A)′, ∧C is
the minimum w.r.t. the order, ∨C is the maximum w.r.t. the order, and ¬C, &C and →C are
respectively defined as

¬Ca =


a′ if a ∈ A
b if a = b′ ∈ A′
¬Ba if a ∈ B

a&Cb =



a&Ab if a, b ∈ C+

¬C(a→A ¬Cb) if a ∈ C+, b ∈ C− and ¬Ca 6≥ b
¬C(b→A ¬Ca) if a ∈ C−, b ∈ C+ and ¬Ca 6≥ b
a&A1b if a, b ∈ C0 and ¬Ca 6≥ b
b if a ∈ C+, b ∈ C0

a if a ∈ C0, b ∈ C+

0C otherwise

a→C b =



a→A b if a, b ∈ C+

¬C(a&A¬Cb) if a ∈ C+, b ∈ C−

1C if a ∈ C−, b ∈ C+

¬Cb→A ¬Ca if a, b ∈ C−
a→A1 b if a, b ∈ C0 and a 6≤ b
1C if a, b ∈ C0 and a ≤ b
b if a ∈ C+, b ∈ C0

1C if a ∈ C0, b ∈ C+

1C if a ∈ C−, b ∈ C0

¬Ca if a ∈ C0, b ∈ C−.

Definition 3.11. Let a A be a prelinear semihoop and B be an IMTL-algebra such that
A ∩ B = ∅. An algebra C, called the connected rotation-annihilation of A and B, is defined
as follows. Let 〈A′ = {a′ : a ∈ A},≤〉 be a disjoint copy of A as above (disjoint also with B)
endowed with inverse ordering and let C = A ∪ A′ ∪ B \ {0B, 1B}. We extend the orderings
to C by letting a′ < b and b < c for every a, c ∈ A and every b ∈ B. Let C+ = A,
C0 = B \ {0B, 1B} and C− = A′. Finally, the operations C are defined as in the disconnected
rotation-annihilation. We will denote C as A� B.
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Proposition 3.12. Let A and B be a prelinear semihoop and an IMTL-algebra respectively.
Then, the disconnected and connected rotation-annihilations of A and B are IMTL-algebras.

Observe that rotation-annihilation of t-norms as presented in the last subsection are a
particular case of this connected rotation-annihilation. On the other hand, it is clear that in
every connected rotation-annihilation A�B the set A is a proper filter of A�B (recall that
a filter in an MTL-algebra is a non-empty upwards directed set closed under the monoidal
operation and the lattice infimum). Moreover, again by using Zorn’s Lemma, we can prove
that every IMTL-chain has a maximum decomposition as a connected rotation-annihilation
(see [77] for more details):

Proposition 3.13. Let A be an IMTL-chain. Then, there is a maximum proper filter F of
A such that A ∼= C � B, where C is the semihoop determined by F and B is the IMTL-chain
determined by (A \ (F ∪ ¬F )) ∪ {0A, 1A}, where ¬F = {¬a | a ∈ F}.

Again the problem with such a decomposition is the lack of a description of the indecom-
posable elements.

On the other hand, as a positive result, MTL-chains enjoy the following powerful embed-
ding property, which is not true for BL-chains.

Theorem 3.14. Every non-trivial countable MTL-chain is embeddable into an MTL-chain
defined over the real unit interval.

The proof of this theorem is given by Jenei and Montagna by means of a method introduced
in [57, 58] and refined in [74]. Actually it gives another method to construct left-continuous
t-norms to be added to the list of the previous subsection:

5. Completion of a countable chain. Let A be a non-trivial countable MTL-chain. A
standard MTL-chain [0, 1]∗ and an embedding h : A ↪→ [0, 1]∗ are built by following
next steps:

• For every a ∈ A, suc(a) is either the successor of a in the order of A if it exists or
suc(a) = a otherwise.

• B = {〈a, 1〉 | a ∈ A} ∪ {〈a, q〉 | ∃a′ ∈ A such that a 6= a′ and suc(a′) = a,
q ∈ Q ∩ (0, 1)}.
• Consider the lexicographical order � on B.

• Define the following monoidal operation on B:

〈a, q〉 ◦ 〈b, r〉 =
{

min�{〈a, q〉, 〈b, r〉} if a&Ab = min{a, b}
〈a&Ab, 1〉 otherwise.

• The ordered monoid 〈A,&A, 1A,≤〉 is embeddable into 〈B, ◦, 〈1A, 1〉,�〉 by map-
ping every a ∈ A to 〈a, 1〉.

• B = 〈B, ◦, 〈1A, 1〉,�〉 is a densely ordered countable monoid with maximum and
minimum, so it is isomorphic to a monoid B′ = 〈[0, 1]Q, ◦′, 1,�′〉. Obviously,
〈A,&A, 1A,≤〉 is also embeddable into B′. Let h be such embedding. Moreover, re-
stricted to h[A], the residuum of ◦′ exists, call it⇒, and h(a)⇒ h(b) = h(a→A b).
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• B′ is completed to [0, 1] by defining:

∀α, β ∈ [0, 1] α ∗ β = sup{x ◦′ y | x ≤ α, y ≤ β, x, y ∈ [0, 1]Q}.

• ∗ is a left-continuous t-norm, so it defines a standard MTL-algebra [0, 1]∗, and h
is the desired embedding.

This method allows us to build an extension of the monoidal operation in any countable
MTL-chain to a left-continuous t-norm over the real unit interval. Thus all continuous and
left-continuous t-norms over a countable chain (for example the rationals) are restrictions of
a left-continuous t-norm over the real unit interval. Notice that, in particular, the way of
extending a left-continuous t-norm on the rationals to the reals as it is done in the last step
of the above completion method is the only possible way that preserves the left-continuity.
In fact, the above method says that any left-continuous t-norm over the rational unit interval
(that can have residuum or not)12 is a restriction of a left-continuous t-norm over the real
unit interval (that always has residuum), and thus it is a restriction of a MTL-chain over the
real unit interval.

As a consequence we obtain the following corollary.

Corollary 3.15. Every MTL-chain defined over the rational unit interval is the restriction
of an MTL-chain defined over the real unit interval.

However, the above completion method may not preserve many other properties the initial
MTL-chain may satisfy. For example, divisibility or cancellativity is not preserved by the
completion method. As an example consider the chain in Example 2.18. The completion
of this chain in the real interval introduces a new element separating the two non-trivial
Archimedean components, say α. Then for every x > α, x ∗ α = α and α ∗ α = 0, and thus
cancellativity and divisibility do not hold any longer. Thus, as we have already mentioned
before, not all BL-chains over the rationals are subalgebras of a BL-chain over the reals, and
the same holds for cancellative MTL-chains satisfying (see in [23] an example of a cancellative
MTL-chain (not BL) that its completion by the Jenei-Montagna method does not give a
cancellative MTL-chain).

As regards to finite MTL-chains, Theorem 3.14 guarantees that, in particular, all finite
chains are embeddable into an MTL-chain over the real unit interval. Moreover, one can show
that this method provides an embedding of any finite MTL-chain into a MTL-chain over the
rationals as well. Remember that for finite BL-chains, based on the knowledge about their
structure, we have proved at the end of Section 2.2 that all of them are subalgebras of a
BL-chain over the rationals and also a subalgebra of a BL-chain over the reals (a restriction
of a continuous t-norm).

Summing up, the embedding results show that left-continuous t-norms over the real unit
interval are so complex and rich that, in particular, contain as subalgebras all MTL-chains
defined over finite, rational or, in general, countable chains. So solving the problem of the
description of left-continuous t-norms would be enough to understand countable MTL-chains
as well.

12See Example 4.3 for an example of a left-continuous t-norm over the rational unit interval that has no
residuum.
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4 About continuity and left-continuity conditions over the or-
der topology

An obvious way to generalize continuity and left-continuity on a chain could be the use of
the order topology defined over the chain. This is something studied in different papers but
it is in [7] where the authors studied the relation between the continuity with respect to the
order topology and the existence of residuum on a chain. In particular, it is shown there the
following:

• If a t-norm over a chain has residuum, then it is left-continuous with respect to order
topology. The converse is not true in general (see Example 4.1), but at least it holds
for complete chains.

• If a t-norm over a chain has residuum and satisfies the divisibility condition, then it is
continuous with respect to the order topology. The converse result is true only when
the chain is complete and dense (see Example 4.2).

Next we give some illustrative examples:

Example 4.1. Take Y = {1
2 + 1

2n | n ∈ ω, n > 0} and C = {0} ∪ [1
5 ,

1
4) ∪ Y and define the

following operation on the chain C:

x ∗ y =



(2x−1)(2y−1)+1
2 , if x, y ∈ Y

1
5 , if x ∈ [1

5 ,
1
4) and y ∈ Y \ {1}, or y ∈ [1

5 ,
1
4) and x ∈ Y \ {1}

0, if x, y ∈ [1
5 ,

1
4) or min{x, y} = 0

x, if y = 1
y, if x = 1

An easy computation shows that ∗ is commutative, associative,13 monotonic, 1 is neutral
and it is left-continuous because it is so on the interval [1

5 ,
1
4). But it has no residuum since

if x ∈ Y \ {1} and y ∈ [1
5 ,

1
4), then

max{c ∈ C | c ∗ x ≤ y} = max{[1
5
,
1
4

)}

does not exist in C.
Finally observe that the same example could be defined taking the same set C but with

only the rationals on the interval [1
5 ,

1
4), and in that case the chain C would be countable.

Example 4.2. Let C be the chain of five elements, 0 < a < b < c < 1 and let ∗ be the binary
operation on C defined as follows:

∗ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a

b 0 a a a b

c 0 a a c c

1 0 a b c 1

13Take into account that ∗ restricted to Y is the product generated by one element and sent back to the set
Y .
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Since C is finite, it is of course complete as well and the operation ∗ is continuous with
respect to the order topology, and thus it has residuum. Nevertheless it does not satisfy the
divisibility property since it holds that

c ∗ (c→∗ b) = c ∗ b = a 6= min{b, c}.

Recalling that a countable densely ordered chain is order-isomorphic to the rationals,
the next example shows a left-continuous t-norm over the rational unit interval that has no
residuum. This is in accordance with Jenei-Montagna’s method where the extension of the
monoidal operation in a countable MTL-chain to a left-continuous t-norm over the rationals
may not have residuum, although its extension over the reals (preserving left-continuity)
always does.

Example 4.3. Let C = { k
2n | n ∈ ω \ {0}, 0 ≤ k ≤ 2n} and take the product t-norm there.

It is clear that C is a countable and densely ordered set, and the product operation is closed
in this set. This operation is clearly continuous on C but it does not has residuum, since,
for example, max{ k

2n ∈ C | k
2n · 3

4 ≤
1
2} does not exist. Since C is order-isomorphic to the

rationals, the induced operation on [0, 1] ∩Q is continuous t-norm over the rationals and has
no residuum.

The above examples show that the notion of continuity and left-continuity with respect
to the order topology is not well related with the residuation property. On the other hand,
another way to generalize the concept of continuity of a t-norm ∗ on a chain C is trying to
keep the property that the image of C by the map fx(y) = x ∗ y is the closed interval [0, x]
in C. This property is actually equivalent to being divisible in the sense that if a < b there
exists c such that a = b ∗ c (cf. Proposition 2.1 for t-norms). But, as in the case of t-norms,
it is well known (see e.g. [37]) that this property over chains is equivalent to the so-called
divisibility equation x ∗ (x→∗ y) = min{x, y} that characterizes BL-algebras. Thus we think
that taking BL-chains as generalizations of continuous t-norms is fully justified.

5 Conclusions

In this paper we have defended the notions of BL-chains and MTL-chains as adequate gen-
eralizations of continuous and left-continuous t-norms respectively, arisen from the study of
algebraic semantics for fuzzy logics over chains with a monoidal residuated operation.

When requiring divisibility property to ensure continuity of the operation over [0, 1], we
have dealt with BL-chains and continuous t-norms. The latter are completely described by
means of the classical decomposition in ordinal sum of three basic components. We have seen
analogous structural results that apply to all BL-chains which in particular allow to describe
all finite BL-chains. However, they are not enough to determine the structure of BL-chains
over the rational unit interval mainly because there is a very large set of them that are not
isomorphic to restrictions of BL-chains over the unit real interval. It remains as an open
problem the description of the indecomposable Wajsberg hoops over the rationals in order to
obtain a full characterization of BL-chains over the rational unit interval.

In contrast, when divisibility property is dropped and one deals with left-continuous t-
norms and MTL-chains, the situation changes dramatically. On the one hand, thanks to a
completion construction that shows that all non-trivial countable MTL-chains are embeddable
into one defined over the reals by a left-continuous t-norm (which is not true for BL-chains
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and continuous t-norms), the problem seems to be simpler as a description of left-continuous
t-norms would in particular yield a description of MTL-chains over rationals and over finite
sets. However, on the other hand, one realizes that the structure of left-continuous t-norms
is so wild and rich that such a goal is still out of hand. As we have reviewed, several valuable
approaches to that problem have been made mainly by giving construction-decomposition
methods for distinguished families of left-continuous t-norms. We have also discussed their
influence to the general study of MTL-chains.

Another interesting topic about t-norms over chains is their equational characterization.
We would like to point out for interested readers that there are several papers devoted to
this topic. In the continuous case the main reference is [25]. In that paper it is proved
that every standard BL-chain (a BL-chain [0, 1]∗ defined by a continuous t-norm ∗ and its
residuum) generates a finitely axiomatizable variety, and an algorithm is provided to find such
an axiomatization. But, is it the same to characterize the variety generated by [0, 1]∗ than
characterizing the t-norm ∗ itself? In other words, how many standard BL-chains generate
the same variety? The answer to this question is also indirectly solved in the cited paper
since it is shown there that each t-norm whose decomposition as ordinal sum of  L, G and Π
components is finite defines a different variety. But the result is not true if the decomposition
has infinitely-many components.

As a consequence when the t-norm has a finite decomposition as ordinal sum of the
three main continuous t-norms, the equations characterizing the variety generated by the
corresponding standard chain, characterize the t-norm as well,14 but this is not true for the
infinite case.

The problem for left-continuous t-norms is far from being solved and only a few cases
have been axiomatized. The main partially solved case is that of Weak Nilpotent Minimum
(WNM) t-norms. The t-norms in this family are the result of the annihilation of the minimum
t-norm by a negation function (when the negation function is involutive we obtain, up to
isomorphism, Fodor’s Nilpotent Minimum t-norm). In [80] the equations characterizing the
variety generated by the standard chain defined by a WNM t-norm are given only when
the WNM t-norm satisfies the so-called Finite Partition Property, and in this case they also
characterize the t-norm. Moreover, the variety generated by a finite WNM-chain is also
equationally characterized. The particular case of NM and its subvarieties have been fully
described in [36]. Other cases have been partially studied but so far there is not a systematic
study of the equational characterization of left-continuous t-norms.

As interesting open problems for further research we point out that, similarly to what has
been done for the rotation and rotation-annihilation) constructions, it would be desirable to
(i) generalize the triple rotation method to obtain IMTL-chains and algebraically characterize
their structure (as disconnected rotations were characterized as perfect algebras in [78]), and
(ii) generalize the class of regular left-continuous t-norms from [87] to some notion of regular
MTL-chains that would still be a generating family for the whole variety with, hopefully, a
describable algebraic structure.
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