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Abstract

This paper is a contribution to the algebraic study of t-norm based fuzzy logics. In the general
framework of propositional core and ∆-core fuzzy logics we consider three properties of complete-
ness with respect to any semantics of linearly ordered algebras. Useful algebraic characterizations
of these completeness properties are obtained and their relations are studied. Moreover, we con-
centrate on five kinds of distinguished semantics for these logics – namely the class of algebras
defined over the real unit interval, the rational unit interval, the hyperreals (all ultrapowers of the
real unit interval), the strict hyperreals (only ultrapowers giving a proper extension of the real
unit interval) and finite chains, respectively – and we survey the known completeness methods and
results for prominent logics. We also obtain new interesting relations between the real, rational
and (strict) hyperreal semantics, and good characterizations for the completeness with respect to
the semantics of finite chains. Finally, all completeness properties and distinguished semantics are
also considered for the first-order versions of the logics where a number of new results are proved.

Key words: Algebraic Logic, Embedding properties, Fuzzy logics, Left-continuous t-norms,
Mathematical Fuzzy Logic, MTL-algebras, Non-classical logics, Residuated lattices, Standard
completeness, Substructural logics, Weakly implicative fuzzy logics

1. Introduction

In his seminal book [36], Hájek considered the problem of finding a common (well motivated)
base for the most important fuzzy logics, namely  Lukasiewicz, Gödel and product logics. There,
he introduced a logic, named BL, and he proposed it for the role of basic fuzzy logic. Hájek’s
proposal was greatly supported by the proof that BL is the logic of all continuous t-norms5 and
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of their residua (see [35, 14]). But in [24] the authors observed that the minimal condition for a
t-norm to have a residuum, and therefore to determine a logic, is left-continuity (continuity is not
necessary). There, they proposed a weaker logic, called MTL (monoidal t-norm based logic), and
conjectured that MTL is the logic of left-continuous t-norms and their residua. This conjecture
was proved in [47]. Thus, it makes sense to propose it (instead of BL) as the real ‘basic fuzzy
logic’ (this claim is also supported by an interesting methodological paper [6]). Another feature
of MTL, which adds interest to it, is constituted by its relationship with substructural logics.
Indeed, MTL is a logic without contraction (see [64]) and it can be characterized as FLew (i.e.
Full Lambek calculus plus exchange and weakening, see [62, 32]) plus prelinearity. As the most
important substructural logics, MTL can be formulated in a hypersequent calculus which enjoys
cut-elimination (see [5]) by adding to the calculus for FLew Avron’s communication rule [3], a
rule which yields completeness with respect to linearly ordered (commutative, integral, bounded)
residuated lattices. Therefore, MTL is a common base for (almost) all systems of fuzzy logic with
the structural rules of exchange and weakening. Further generalizations are of course possible,
mainly by removing these structural rules.

While BL and its extensions have been studied in a rather systematic way (see e.g. [14, 60, 20,
36, 35, 41]), the knowledge of MTL is still partial, in spite of a number of interesting publications,
e.g. [22, 43, 42, 47, 56, 58, 55, 59]. The reason is that the structure of MTL-algebras is by
far more complex than the structure of BL-algebras (which is more-or-less fully described in
[36, 14, 15, 52, 20]). In any case, for some important expansions L of MTL, a standard completeness
result has been shown, stating that for any set T ∪ {ϕ} of formulae, one has T `L ϕ iff for every
L-algebra on [0, 1] and for every evaluation v, if v(ψ) = 1 for all ψ ∈ T , then v(ϕ) = 1. This is a
very important result, because for both the many-valued logics tradition (see e.g. [21, 50]) as well
as for fuzzy logicians6 (see e.g. [36, 34, 51]) the intended semantics is often real-valued.

Some logics, however, like BL, product logic and  Lukasiewicz logic, satisfy the above comple-
teness property only for finite T (to obtain it also for infinite T , one would need to use semantics
based on L-algebras over either the rationals in [0, 1] or a non-standard real interval). The sit-
uation for first-order fuzzy logics is even worse: for some logics like BL,  Lukasiewicz or product
logic, we do not even have standard completeness for T = ∅.

Another form of completeness, which is useful in order to obtain decidability, is completeness
(for finite T ) with respect to the class of finite L-algebras. This property and its variant consisting
of the finite embeddability property (FEP), was used to show that many logics, like MTL, BL,
 Lukasiewicz logic and Gödel logic have a decidable consequence relation.

The purpose of this paper is to frame these completeness results, so far proved ad hoc in the
literature, into a more general context where they will be consequences of new general theorems.
Our generalization will proceed in two directions: taking an arbitrary class of L-chains instead of
the class of standard L-chains or the class of finite chains, and considering a more general class of
logics, that is, core and ∆-core fuzzy logics. These logics extend MTL, but may contain additional
operators, provided that they are compatible with provable equivalence.

Then, after giving a number of general results concerning various types of completeness with
respect to general classes of chains, we will state some consequences concerning some more familiar
semantics based on the real unit interval, the rational unit interval, the hyperreals (all ultrapowers
of the real unit interval), the strict hyperreals (only ultrapowers giving a proper extension of the
real unit interval) and on finite chains respectively.

The paper is organized as follows. First, in Section 2 we introduce the necessary definitions, no-
tation and preliminar results that we use throughout the paper, i.e. the notions of core and ∆-core
fuzzy logics are defined together with their most prominent examples and further their algebraiza-
tion and main properties are presented. In Section 3 three notions of semantical completeness
(K-completeness, finite strong K-completeness and strong K-completeness) are introduced and

6The central interest on real-valued semantics in Fuzzy Logic stems from the foundational work of Zadeh [71] on
Fuzzy Sets and its extensions to other possible operations on [0, 1], such as t-norms, to interpret operations between
them (see e.g. [2]).
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studied from a general point of view by letting the semantics K be any class of algebras. However,
as all (∆-)core fuzzy logics are complete with respect to the class of their linearly ordered algebras,
we usually restrict our attention to classes of chain. With this restriction, we obtain good charac-
terization results for some of these completeness properties; namely, we prove that a logic L has
the strong K-completeness iff every countable L-chain is embeddable into some chain of K, and
L has the finite strong K-completeness iff every L-chain is partially embeddable into the class K.
These results show that some conditions that where used in the literature to prove standard com-
pleteness results were in fact not only sufficient but also necessary conditions. We also establish
some interesting relations between the completeness properties. In Section 4 we introduce the five
kinds of distinguished semantics for fuzzy logics. We survey the methods that have been used to
prove completeness of the logics with respect some of these semantics and collect the known results
for prominent fuzzy logics. In addition, by means of some algebraic and model-theoretic reasoning
we show a strong link between the rational and the (strict) hyperreal semantics. On the contrary,
we obtain a significant difference between standard and rational completeness properties, which
is explained in algebraic terms. Finally, we show how completeness properties with respect to the
semantics of finite chains are related to well-known algebraic properties: Finite Embeddability
Property, Strong Finite Model Property and Finite Model Property.

The rest of the paper deals with the first-order versions of the logics. After recalling how
they are uniformly produced from the corresponding propositional logics and the fundamentals
of their model theory, we also consider the three completeness properties for these logics. We
prove that a first-order fuzzy logic is strongly complete with respect to a class of models over the
chains in K iff every countable model of the logic is elementarily equivalent to a model whose
corresponding chain is in K. Nevertheless, all known proofs of strong standard completeness for
first-order fuzzy logics do not use this model-theoretic property, but an algebraic one: the fact that
every countable chain of the variety is embeddable into a standard chain by a σ-embedding (an
embedding which preserves all existing suprema and infima). We show that this algebraic condition
is in general not equivalent to the strong K-completeness but to another model-theoretic property:
every countable model of the logic is elementarily equivalent to a model with an isomorphic domain
whose corresponding chain is in K. By making use of the theory of formal grammars and languages
we present a constructive method that disproves completeness of a first-order logic starting from
a counterexample to the completeness of the corresponding propositional logic. We complete
the study by considering the five distinguished semantics also at the first-order level. Here, we
collect again known results for prominent fuzzy logics and prove some interesting relations between
different completeness properties. The paper ends with some conclusions and open problems.

2. Preliminaries

2.1. The logic MTL and its prominent axiomatic extensions
The term t-norm based logic usually refers to residuated systems of fuzzy logic with t-norm

based semantics, i.e. where the conjunction connective is interpreted by a (left-continuous) t-norm
and the implication operator by its residuum. In this framework, the weakest logic is the Monoidal
T-norm based Logic (MTL). It is defined by Esteva and Godo in [24] by means of a Hilbert-style
calculus in the language L0 = {&,→,∧, 0} of type 〈2, 2, 2, 0〉. FmL0 will denote the set of all
formulae built over a denumerable set of propositional variables using the connectives of L0. The
only inference rule of the calculus is Modus Ponens and the axiom schemata are the following
(taking → as the least binding connective):
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(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ&ψ → ϕ
(A3) ϕ&ψ → ψ&ϕ
(A4) ϕ ∧ ψ → ϕ
(A5) ϕ ∧ ψ → ψ ∧ ϕ
(A6) ϕ&(ϕ→ ψ)→ ϕ ∧ ψ
(A7a) (ϕ→ (ψ → χ))→ (ϕ&ψ → χ)
(A7b) (ϕ&ψ → χ)→ (ϕ→ (ψ → χ))
(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A9) 0→ ϕ

The usual defined connectives are introduced as follows:

ϕ ∨ ψ as ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ) ¬ϕ as ϕ→ 0
ϕ↔ ψ as (ϕ→ ψ)&(ψ → ϕ) 1 as ¬0

Also as usual, ϕn will be used as a shorthand for ϕ& n. . . &ϕ, where ϕ0 = 1. MTL enjoys the
following form of local deduction-detachment theorem and substitution rule.

Proposition 2.1. For each set of formulae T ∪ {ϕ,ψ, χ} it holds:

T, ϕ `MTL ψ iff there is n ∈ N such that T `MTL ϕ
n → ψ (LDT )

ϕ↔ ψ `MTL χ(ϕ)↔ χ(ψ). (Cong)

The algebraic counterpart7 of MTL logic is the class of the so-called MTL-algebras. They are
defined as follows.

Definition 2.2 ([24]). An MTL-algebra is an algebra A = 〈A,&A,→A,∧A,∨A, 0A, 1A〉 of type
〈2, 2, 2, 2, 0, 0〉 such that:

1. 〈A,∧A,∨A, 0A, 1A〉 is a bounded lattice.

2. 〈A,&A, 1A〉 is a commutative monoid with unit 1A.
3. The operations &A and →A form an adjoint pair: a&Ab ≤ c iff b ≤ a→A c.
4. It satisfies the prelinearity equation: (a→A b) ∨A (b→A a) = 1A

If the lattice order is total we will say that A is a linearly ordered MTL-algebra (or just an MTL-
chain).

An additional (unary) negation operation is defined as ¬Aa = a →A 0A. Similarly, an addi-
tional (binary) equivalence operation is defined as a↔A b = (a→A b)&A(b→A a). For the sake
of a simpler notation, superscripts in the operations of the algebras will be omitted when they are
clear from the context.

The class of all MTL-algebras is a variety which will be denoted as MTL.8

Definition 2.3. Let K be a class of MTL-algebras. We define the consequence relation |=K in the
following way: T |=K ϕ iff for each A ∈ K and A-evaluation e: e(ϕ) = 1A whenever e[T ] ⊆ {1A}.

We write |=K ϕ instead of ∅ |=K ϕ and T |=A ϕ instead of T |={A} ϕ. An A-evaluation e such

that e[T ] ⊆ {1A} is called an A-model of T . That MTL is the proper algebraic semantics for MTL
is witnessed by the following completeness result.

Theorem 2.4 ([24]). Let T ∪ {ϕ} ⊆ FmL0 . Then T `MTL ϕ if and only if T |=MTL ϕ.

7We assume some basic knowledge on Universal Algebra. All the undefined notions and the notation we will
use can be found in [9].

8In fact, it is the variety of bounded commutative integral residuated lattices with prelinearity.
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This completeness result can be refined by taking into account the following representation of
MTL-algebras, strongly related to the prelinearity property of MTL-algebras.

Proposition 2.5 ([24]). Every MTL-algebra is a subdirect product of MTL-chains.

This leads to the completeness of MTL with respect to the class of MTL-chains.

Corollary 2.6. Let T ∪ {ϕ} ⊆ FmL0 . Then T `MTL ϕ if and only if T |={MTL-chains} ϕ.

Most of the well-known fuzzy logics (among them  Lukasiewicz logic, Gödel logic, product
logic and Hájek’s BL logic)—as well as the Classical Propositional Calculus—can be presented as
axiomatic extensions of MTL. Tables 1 and 2 collect some axiom schemata and the axiomatic
extensions of MTL that they define.9 Notice that in extensions of MTL with the divisibility
axiom (Div), the additive conjunction ∧ is in fact definable (as BL proves: ϕ ∧ ψ ↔ ϕ&(ϕ→ ψ))
and therefore it is not considered as primitive connective in their languages. For the sake of
homogeneity we will keep L0 = {&,→,∧, 0} as the common language for all extensions of MTL.

Axiom schema Name
¬¬ϕ→ ϕ Involution (Inv)

¬ϕ ∨ ((ϕ→ ϕ&ψ)→ ψ) Cancellation (Can)
¬(ϕ&ψ) ∨ ((ψ → ϕ&ψ)→ ϕ) Weak Cancellation (WCan)

ϕ→ ϕ&ϕ Contraction (C)
ϕn−1 → ϕn n-Contraction (Cn)
ϕ ∧ ¬ϕ→ 0 Pseudocomplementation (PC)

ϕ ∧ ψ → ϕ&(ϕ→ ψ) Divisibility (Div)
(ϕ&ψ → 0) ∨ (ϕ ∧ ψ → ϕ&ψ) Weak Nilpotent Minimum (WNM)

ϕ ∨ ¬ϕ Excluded Middle (EM)

Table 1: Some usual axiom schemata in fuzzy logics.

Logic Additional axiom schemata References
SMTL (PC) [37]
ΠMTL (Can) [37]

WCMTL (WCan) [55]
IMTL (Inv) [24]
WNM (WNM) [24]
NM (Inv) and (WNM) [24]

CnMTL (Cn) [12]
CnIMTL (Inv) and (Cn) [12]

BL (Div) [36]
SBL (Div) and (PC) [25]

 L (Div) and (Inv) [36, 49]
Π (Div) and (Can) [41]
G (C) [36, 21, 33]

CPC (EM)

Table 2: Some axiomatic extensions of MTL obtained by adding the corresponing additional axiom schemata.

9Of course, some of these logics were known well before MTL was introduced. We only want to point out
that they can be seen as axiomatic extensions of MTL. Moreover, we introduce only the most prominent axiomatic
extensions of MTL (for some additional ones see e.g. [55, 58, 69, 70]). The pseudocomplementation axiom appearing
in the table is equivalent to the weak contraction axiom (see e.g. [63]).
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MTL is actually an algebraizable logic in the sense of Blok and Pigozzi (see [7]) and MTL
is its equivalent algebraic semantics. This implies that all axiomatic extensions of MTL are also
algebraizable and their equivalent algebraic semantics are the subvarieties of MTL defined by the
translations of the axioms into equations. In particular, there is an order-reversing isomorphism
between axiomatic extensions of MTL and subvarieties of MTL:

1. If Σ ⊆ FmL0 and L is the extension of MTL obtained by adding the formulae of Σ as axiom
schemata, then the equivalent algebraic semantics of L is the subvariety of MTL axiomatized
by the equations {ϕ ≈ 1 | ϕ ∈ Σ}. We denote this variety by L and we call its members
L-algebras. There are two exceptions to that rule: the algebras associated to  L are called MV-
algebras following the terminology of Chang in [10] and the algebras associated to the Classical
Propositional Calculus (CPC for short) are called, of course, Boolean algebras. Moreover, since
L-algebras are representable as subdirect product of L-chains, the completeness of MTL with
respect to chains is inherited by L.

2. Let L ⊆MTL be the subvariety axiomatized by a set of equations Λ. Then the logic associated
to L is the axiomatic extension L of MTL given by the axiom schemata {ϕ↔ ψ | ϕ ≈ ψ ∈ Λ}.

2.2. Expansions of MTL
In the literature of t-norm based logics, one can find not only a number of axiomatic extensions

but also expansions of MTL by means of expanding the language with new connectives. Well-
known examples are the expansions with Baaz’s Delta projection connective ∆ [4], expansions
with an involutive negation ∼ [17, 25, 31], expansions with other conjunction or implication
connectives [26, 46, 54], or expansions with intermediate truth-constants [65, 61, 27, 29, 23, 68].
In this subsection we introduce two important classes of logics expanding MTL, which encompass
almost all logics mentioned above.

First we introduce one particular expansion of MTL, the logic MTL∆. It is obtained by
enriching the language with the unary connective ∆ and adding to the Hilbert-style system of
MTL the deduction rule of necessitation (from ϕ infer ∆ϕ) and the following axiom schemata:

(∆1) ∆ϕ ∨ ¬∆ϕ

(∆2) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ)

(∆3) ∆ϕ→ ϕ

(∆4) ∆ϕ→ ∆∆ϕ

(∆5) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)

It is easily provable that MTL∆ enjoys (Cong) but not (LDT ). However it enjoys another
form of deduction theorem (in fact it is a global deduction-detachment theorem).

Proposition 2.7. For each set of formulae T ∪ {ϕ,ψ} the following condition holds:

T, ϕ `MTL∆ ψ iff T `MTL∆ ∆ϕ→ ψ (DT ∆)

Definition 2.8 ([24]). An MTL∆-algebra is a structure A = 〈A,&,→,∧,∨,∆, 0, 1〉 of type
〈2, 2, 2, 2, 1, 0, 0〉 such that:

(0) the reduct 〈A,&,→,∧,∨, 0, 1〉 is an MTL-algebra,
(1) A |= α ≈ 1 for each α ∈ {∆1, . . . ,∆5}, and
(2) A |= ∆(1) ≈ 1.

The following two classes of logics were introduced in [39] (with the small difference that ∆-core
fuzzy logic were called just ∆-fuzzy logics) and used in the current form e.g. in [40].

Definition 2.9. We say that a finitary logic L in a countable language is a core fuzzy logic if
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• L expands MTL,

• L satisfies (Cong),

• L satisfies (LDT ).

Definition 2.10. We say that a finitary logic L in a countable language is a ∆-core fuzzy logic if

• L expands MTL∆,

• L satisfies (Cong),

• L satisfies (DT ∆).

The following proposition is a direct consequence of [16, Corollary 8 and Theorem 6].

Proposition 2.11. Let L be an expansion of MTL (respectively of MTL∆) satisfying (Cong).
Then L is a (∆-)core fuzzy logic if and only if it is an axiomatic expansion of MTL (MTL∆).

In the following definition by the term additional connective (axiom) of L we understand a
connective (axiom) not present in MTL.

Definition 2.12. Let L be a core fuzzy logic and I the set of additional connectives of L. An
L-algebra is a structure A = 〈A,&,→,∧,∨, 0, 1, 〈c〉c∈I〉 such that 〈A,&,→,∧,∨, 0, 1〉 is an MTL-
algebra and for each additional axiom ϕ of L the identity ϕ ≈ 1 holds.

Analogously we define L-algebras for ∆-core fuzzy logics. As in the previous subsection we will
denote the class of L-algebras by L. From the axioms of ∆ we easily obtain:

Proposition 2.13. Let L be a ∆-core fuzzy logic and B an L-chain. Then ∆Bx = 1B if x = 1B

and ∆Bx = 0B otherwise.

The following proposition collects the basic properties of (∆-)core fuzzy logics which are either
easy observations or consequences of the corresponding papers.

Proposition 2.14. Let L be a (∆-)core fuzzy logic.

• L is an implicative logic in the sense of Rasiowa [67].

• L is a weakly implicative fuzzy logic in the sense of Cintula [16].

• L is algebraizable with the same translations as MTL.

• L is an equivalent algebraic semantics of L.

• L is a variety.

• Every L-algebra is representable as a subdirect product of L-chains.

• For every set of formulae T ∪ {ϕ}, T `L ϕ if and only if T |={L-chains} ϕ.

For each core fuzzy logic L we can define the corresponding ∆-fuzzy logic L∆ resulting from L
in the same way as MTL∆ from MTL. The following result is straightforward.

Proposition 2.15. For every core fuzzy logic L, L∆ is a conservative expansion of L.
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3. General completeness results

As we have already mentioned in the previous section, in (∆-)core fuzzy logics we have com-
pleteness w.r.t. the corresponding variety and also w.r.t. the class of chains in that variety. Occa-
sionally we may restrict ourselves even further to some proper subclass of chains thus obtaining
finer completeness results.

Next we deal with different types of algebraic completeness, taking into account the cardinality
of the set of premises. We define below the notions of strong K-completeness, finite strong K-
completeness and K-completeness.

Definition 3.1. Let L be a (∆-)core fuzzy logic and K a class of L-algebras. We say that L has
the property of:

• strong K-completeness, SKC for short, when for every set of formulae T ∪ {ϕ}: T `L ϕ iff
T |=K ϕ.

• finite strong K-completeness, FSKC for short, when for every finite set of formulae T ∪{ϕ}:
T `L ϕ iff T |=K ϕ.

• K-completeness, KC for short, when for every formula ϕ: `L ϕ iff |=K ϕ.

Of course, the SKC implies the FSKC, and the FSKC implies the KC. In Subsection 3.2 we
prove more results about the mutual relationships of these properties. But first we show several
equivalent characterizations.

3.1. Equivalent algebraic characterizations
Let us recall the basic properties of the semantical consequence |=K (see for instance [9, 18]).

1. |=K ϕ iff |=V(K) ϕ, for every ϕ.
2. T |=K ϕ iff T |=Q(K) ϕ, for every finite T ∪ {ϕ}.
3. T |=K ϕ iff T |=ISPσ−f (K) ϕ, for every T ∪ {ϕ}, where Pσ−f denotes the operator of reduced

products over countably complete filters.

Thus we can obtain the following equivalent algebraic properties for each type of completeness.

Theorem 3.2. Let L be (∆-)core fuzzy logic. Then:

1. L has the KC if and only if L = V(K).
2. L has the FSKC if and only if L = Q(K).
3. L has the SKC if and only if L = ISPσ−f (K).

Moreover since we may restrict all classes to chains we can obtain new equivalencies. Before
we do so we prepare one definition and one lemma.

Definition 3.3 (Directed set of formulae). Let L be a (∆-)core fuzzy logic. A set of formulae Ψ
is directed if for each ϕ,ψ ∈ Ψ there is χ ∈ Ψ such that both ϕ→ χ and ψ → χ are provable in L
(we call χ an upper bound of ϕ and ψ).

Lemma 3.4. Let L be a (∆-)core fuzzy logic with SKC. Then for every set of formulae T and
every directed set of formulae Ψ the following are equivalent:

• T 6`L ψ for each ψ ∈ Ψ.

• there is an algebra A ∈ K and an A-evaluation e such that e[T ] ⊆ {1A} and 1A /∈ e[Ψ].
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Proof. One direction is obvious. For the other one let us take an unused propositional variable
v, and define the set of formulae T ′ = T ∪ {ψ → v | ψ ∈ Ψ}. We show that T ′ 6`L v by the
way of contradiction. Assume that T ′ `L v. Thus there are finite sets T̂ ⊆ T and Ψ̂ ⊆ Ψ such
that T̂ ∪ {ψ → v | ψ ∈ Ψ̂} `L v. Let δ ∈ Ψ denote an upper bound of formulae from Ψ̂. As
T 6`L δ we know that there is an L-algebra A and an A-model e of T such that e(δ) < 1. We
define the evaluation e′ as e′(p) = e(p) for each p 6= v and e′(v) = e(δ). Clearly e′ is a A-model of
T̂ ∪ {ψ → v | ψ ∈ Ψ̂} and e′(v) < 1, a contradiction.

Now we can use the SKC to obtain an L-chain B ∈ K and a B-model e of T ′ such that e(v) < 1.
Thus 1 6∈ e[Ψ] (if e(ψ) = 1 for some ψ ∈ Ψ then, since e is a model of T ′, we obtain e(v) = 1, a
contradiction).

Theorem 3.5. Let L be a (∆-)core fuzzy logic in a propositional language L and let K be a class
of L-chains. Then the following are equivalent:

(i) L has the SKC.

(ii) Every countable L-chain belongs to IS(K).

(iii) Every countable subdirectly irreducible L-chain belongs to IS(K).

Proof. (i) ⇒ (ii): Let A be a countable L-chain. Consider a set of pairwise different variables
{va | a ∈ A} and the following set of formulae:

T = {λ(va1 , . . . , van)↔ vλA(a1,...,an) | λ an n-ary connective of L and a1, . . . , an ∈ A}.

We define the set Ψ = {va1 ∨ . . . ∨ van | n ∈ N and a1, . . . an ∈ A \ {1
A}}. Clearly Ψ is directed

and T 6`L ψ for each ψ ∈ Ψ (just take A with the A-evaluation e(va) = a as a countermodel).
Now we use the SKC and Lemma 3.4 to obtain an L-chain B ∈ K and a B-evaluation e such

that e[T ] ⊆ {1B} and e(ψ) < 1B for each ψ ∈ Ψ. Consider the mapping f : A → B defined as
f(a) = e(va). It is clear that f is a homomorphism from A to B. By construction, if a < 1A, then
f(a) = e(va) < 1B, as va ∈ Ψ. Therefore f is an embedding. Indeed, if a, b ∈ A are such that
f(a) = f(b), then f(a)↔ f(b) = 1B, i.e. f(a↔ b) = 1B, and hence a↔ b = 1A, i.e. a = b.

(ii)⇒ (iii): Obvious.
(iii)⇒ (i): Suppose that for some T and ϕ we have T 6`L ϕ. Then there is an L-chain A and

an A-evaluation e such that e[T ] ⊆ {1A} and e(ϕ) < 1A. Let B be the countable subalgebra of
A whose universe is e[FmL]. B is not necessarily subdirectly irreducible but it is representable as
a subdirect product of a family of subdirectly irreducible countable L-chains {Bi | i ∈ I}. Since
e(ϕ) < 1B, there is some i ∈ I such that the i-th component of e(ϕ) is not 1Bi . Thus, T 6|=Bi ϕ.
Finally, since by assumption Bi is embeddable into some algebra of K, we obtain T 6|=K ϕ.

The following is an immediate consequence of the above theorem and the fact that each (∆-)core
fuzzy logic enjoys the SKC for K being the class of countable subdirectly irreducible L-chains.

Corollary 3.6. Let L be a (∆-)core fuzzy logic. Then each countable L-chain is embeddable into
a countable subdirectly irreducible L-chain.

Now we move to the FSKC. In some cases (e.g. in  Lukasiewicz, product, and Basic fuzzy
Logic) this property has been proved by using partial embeddability. We recall its definition.

Definition 3.7. For two algebras A and B of the same language L, A is partially embeddable
into B when each finite subset F of A can be partially embedded into B. I.e. there is a one-
to-one mapping f : F → B such that for each c ∈ L and elements a1, . . . , an ∈ F satisfying
cA(a1, . . . , an) ∈ F : f(cA(a1, . . . , an)) = cB(f(a1), . . . , f(an)). A class K of algebras is (partially)
embeddable into a class M if every member of K is (partially) embeddable into a member of M.

Theorem 3.8. Let L be a (∆-)core fuzzy in a finite language L and let K be a class of L-chains.
Then the following are equivalent:

9



(i) L has the FSKC.

(ii) Every countable L-chain is partially embeddable into K.

(iii) Every L-chain is partially embeddable into K.

(iv) Every subdirectly irreducible L-chain is partially embeddable into K.

(v) Every countable subdirectly irreducible L-chain is partially embeddable into K.

Proof. (i) ⇒ (ii): Let us take a countable L-chain A and a finite set B ⊆ A. Define set B′ =
B ∪ {a→A b | a, b ∈ B}. Consider a set of pairwise different variables {va | a ∈ A} (we can do it
because A is countable) and a set of formulae T (notice a difference between this set and the set
T from the proof of Theorem 3.5):

T = {λ(va1 , . . . , van)↔ vλA(a1,...,an) | λ an n-ary connective and a1, . . . , an, λ
A(a1, . . . , an) ∈ B′}.

Let ϕ be the formula
∨

a∈B′\{1}
va. Observe that T is finite and T 6`L ϕ (take the L-chain A

and the A-evaluation e(va) = a). Thus by the FSKC there is an L-algebra D ∈ K and a D-
evaluation e such that e[T ] = {1D} and e(ϕ) < 1D. Define a mapping f : B → D as f(a) = e(va).
Obviously f is a partial homomorphism. We show that f is one-to-one: if a, b ∈ B and a > b

then f(a) →D f(b) = e(va) →D e(vb) = e(va→Ab) < 1D (the first equality is the definition, the
second one is the consequence of the fact that a →A b ∈ B′ and e is an D-model of T , and the
last inequality follows from the fact that e(va→Ab) ≤ e(ϕ) < 1D).

(ii)⇒ (iii): Let A be an L-chain and B ⊆ A a finite partial subalgebra. Then the subalgebra
of A generated by B is countable, so we can apply (ii).

Implications (iii) ⇒ (iv) and (iv) ⇒ (v) are trivial; (v) ⇒ (i) is proved analogously to the
implication (iii)⇒ (i) of Theorem 3.5.

Remark 3.9. Notice that the implications from (ii), (iii), (iv) or (v) to (i) hold also for infinite
languages, whereas the converse ones do not (as shown by the following example).

Example 3.10. Consider the language L resulting from L0 by adding an infinite countable set
C = {ci | i ∈ ω} of 0-ary connectives. Let GC be Gödel logic in this language (and no additional
axiom), and let GC be the corresponding variety of Gödel algebras with infinitely many constants.
Clearly, GC is a core fuzzy logic. Now consider the class R1 of algebras on [0, 1] in which all
constants, except from a finite number, are interpreted as 1.

Consider a finite set T ∪ {ϕ}, such that T 6`GC ϕ then also T 6`G ϕ, where we understand
the new constants just as propositional variables. Thus by the strong standard completeness of
Gödel logic, there is an [0, 1]G-evaluation e such that e[T ] ⊆ {1} and e(ϕ) < 1. We construct
a GC-algebra A resulting from [0, 1]G by setting cAi = e(ci) for ci occurring in T ∪ {ϕ} and 1
otherwise. Notice that e can be viewed as A-evaluation and as A ∈ R1 (because T ∪ {ϕ} contains
only finitely many constants) we obtain, T 6|=R1 ϕ. Thus we have shown FSR1C of GC .

On the other hand, let us denote by [0, 1]0 the Gödel algebra on [0, 1] with all constants inter-
preted into 0. Clearly, any partial subalgebra of [0, 1]0 containing 0 does not partially embed into
any algebra in R1.

Nevertheless, we can give the following characterization for the FSKC that holds even for
infinite languages.

Theorem 3.11. Let L be a (∆-)core fuzzy logic and K a class of L-chains. Then the following
are equivalent:

(i) L satisfies the FSKC.
(ii) Every L-chain belongs to ISPU (K).

10



Proof. (i) ⇒ (ii): if L satisfies the FSKC then, by Theorem 3.2, its equivalent variety semantics
L is such that L = Q(K). It follows from [19, Lemma 1.5] that every relative finitely subdirectly
irreducible member of Q(K) belongs to ISPU (K). Since Q(K) is a variety, relative finitely subdi-
rectly irreducible members coincide with finitely subdirectly irreducible algebras in the absolute
sense, hence with L-chains.

(ii) ⇒ (i): if every L-chain belongs to ISPU (K), since every L-algebra is representable as
subdirect product of L-chains we have that

L ⊆ IPSD(ISPU (K)) ⊆ Q(K) ⊆ L.

Therefore by Theorem 3.2, L has the FSKC.

3.2. Relations between different notions of completeness
First we show that the notions of the SKC and the FSKC are, under certain conditions,

equivalent.

Proposition 3.12. Let L be a (∆-)core fuzzy logic and K a class of L-chains. Then L has the
FSKC if and only if L is the finitary companion of |=K.

Proof. Let us denote the finitary companion of |=K as L′. By definition we have T `L′ ϕ iff there is
a finite T ′ ⊆ T and T ′ |=K ϕ. Thus from T `L′ ϕ we obtain T `L ϕ (by the FSKC) and vice versa
(by soundness). Reverse direction: just observe that for finite T we have T `L ϕ iff T `L′ ϕ.

Corollary 3.13. Let L be a (∆-)core fuzzy logic and K a class of L-chains such that |=K is
finitary. Then L has the SKC if and only if L has the FSKC.

Corollary 3.14. Let L be a (∆-)core fuzzy logic and K a class of L-chains such that I(K) =
IPU (K). Then L has the SKC if and only if L has the FSKC.

Proof. Just recall that the equational consequence relative to a class of algebras closed under
ultraproducts is finitary.

Corollary 3.15. Let L be a (∆-)core fuzzy logic and let K be a class of L-chains such that L
enjoys the FSKC. Then L has the SPU (K)C.

Now we show that if a (∆-)core fuzzy logic does not enjoy the KC, the FSKC or the SKC,
then any of its conservative expansions neither does.

Proposition 3.16. Let L be a (∆-)core fuzzy logic in a language L and L′ a conservative expansion
of L. Let further K′ be a class of L′-chains and K the class of their L-reducts. Then:

• If L′ enjoys the K′C, then L enjoys the KC.

• If L′ enjoys the FSK′C, then L enjoys the FSKC.

• If L′ enjoys the SK′C, then L enjoys the SKC.

Proof. All the implications are proved in a similar way. Let us prove as an example the first one.
We want to show that L has the KC and we do it contrapositively: assume 6`L ϕ. Since L′ is a
conservative expansion of L, we also have 6`L′ ϕ and so by the K′C we obtain 6|=A′ ϕ for some
A′ ∈ K′. Thus also 6|=A ϕ for the reduct A of A′. As A ∈ K we obtain 6|=K ϕ.

In the case of expansions with ∆, since there is a one-to-one correspondence between L-chains
and L∆-chains, the result can be improved in the case of SKC and FSKC.

Proposition 3.17. Let L be a core fuzzy logic. We have: L has the SKC (resp. FSKC) with
respect to a class of L-chains K if and only if L∆ has the SK∆C (resp. FSK∆C), where K∆ is the
class of ∆-expansions of chains in K.

11



Proof. It is an easy consequence of Theorems 3.5 and 3.11.

Interestingly enough, in ∆-core fuzzy logics the notions of KC and FSKC coincide.

Proposition 3.18. Let L be a ∆-core fuzzy logic and K a class of L-chains. Then L has the KC
if and only if L has the FSKC.

Proof. One direction is obvious. To prove the converse one, assume that T 6`L ϕ for some finite
T . Thus the formula χ =

∧
ψ∈T ∆ψ → ϕ is not a theorem of L (by (DT ∆)). Thus, by the KC

there is an L-chain B ∈ K and an B-evaluation e such that e(χ) < 1B. As we know the semantics
of ∆ in any L-chain (Proposition 2.13) we can conclude that e[T ] ⊆ {1B} and e(ϕ) < 1B.

This proposition is not valid for core fuzzy logics and arbitrary class K as witnessed by [23,
Theorems 28–30]. The question for which classes of logics and chains the equivalence holds is one
the most interesting open problems as it usually holds in the known cases. In order to solve this
problem a better characterization of KC seems to be needed.

Finally, combining the two propositions above we obtain:

Corollary 3.19. Let L be a core fuzzy logic and K a class of L-chains. Then L has the FSKC if
and only if L∆ has the K∆C.

4. Distinguished semantics

Researchers in Fuzzy Logic have been traditionally interested in semantics defined over the real
unit interval. Such kind of semantics can be found inside the class of MTL-algebras. Indeed, given
a left-continuous t-norm ∗ and its residuum→ (defined as a→ b = max{c | a∗c ≤ b}), the algebra
[0, 1]∗ = 〈[0, 1], ∗,→,min,max, 0, 1〉 is an MTL-chain. Notice that [0, 1]∗ is completely determined
by the t-norm. Moreover, it is obvious that in every MTL-chain A over [0, 1], the operation &A is
a left-continuous t-norm. These chains are traditionally called standard algebras. It is well known
that a standard algebra [0, 1]∗ is a BL-chain if and only if ∗ is continuous. Prominent examples of
continuous t-norms are the  Lukasiewicz t-norm (a ∗ L b = max{0, a+ b− 1}), the product t-norm
(a ∗Π b = ab) and the minimum t-norm (a ∗G b = min{a, b}). We will denote these standard
algebras by [0, 1] L, [0, 1]Π and [0, 1]G, respectively. In [48] and [57] it is independently proved that
every standard BL-algebra is decomposable as an ordinal sum of isomorphic copies of these three
basic components.

Also very close to the standard semantics for a fuzzy logic is the rational-chain semantics, i.e.
instead of standard algebras one can also consider MTL-algebras over the rational unit interval
[0, 1]Q = [0, 1] ∩Q as another interesting semantics, easily justified by computational reasons.

Another meaningful semantics close to the standard one is that of hyperreals: we consider
algebras over any ultrapower of real unit interval.10 But in this way one obtains something more
than just the class of algebras defined over the non-standard real numbers. Indeed, an ultrapower
modulo a principal filter gives again a chain over the reals, so this semantics actually includes
not only the proper hyperreal chains but also the standard chains. Therefore, it makes sense to
consider the semantics given only by those ultrapowers which are a proper extension of the reals.
We will call it strict hyperreal semantics. Finally, the semantics based on finite MTL-chains is also
interesting for fuzzy logics for its simplicity and its connection to decidability.

In the following we explore the completeness properties with respect to these five kinds of
semantics for any (∆-)core fuzzy logic L.11

Notation We will use the term:

10This kind of semantics for fuzzy logics has been already considered in a recent paper [30].
11For an alternative chain semantics not covered in the present paper see [44].
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• standard or real-chain completeness (RC) to denote K-completeness when K is the class of
L-chains whose lattice reduct is [0, 1];12

• rational-chain completeness (QC) to denote K-completeness when K is the class of L-chains
whose lattice reduct is [0, 1]Q;

• hyperreal-chain completeness (R?C) to denote K-completeness when K is the class of L-chains
whose lattice reduct is any ultrapower of [0, 1];

• strict hyperreal-chain completeness (R?sC) to denote K-completeness when K is the class of
L-chains whose lattice reduct is an ultrapower of [0, 1] which is a proper extension of the
real unit interval;13

• finite-chain completeness (FC) to denote K-completeness when K is the class of finite L-
chains.

Of course, we also define the two stronger notions of completeness, i.e. FSKC and SKC for
K ∈ {R,Q,R?,R?s,F}.

We can easily show that one of these hyperreal semantics is in fact redundant in propositional
logics. Moreover, in Subsection 4.2 we will prove that, when it comes to completeness properties,
the rational semantics is equivalent to the hyperreal ones. Analogous equivalence results, with
more complex proofs, will be obtained for first-order logics in Subsection 5.3.

Proposition 4.1. For every (∆-)core fuzzy logic L we have:

(1) L enjoys the SR?C if and only if L enjoys the SR?sC.

(2) L enjoys the FSR?C if and only if L enjoys the FSR?sC.

(3) L enjoys the R?C if and only if L enjoys the R?sC.

Proof. Since the hyperreal semantics contains the strict hyperreal semantics by definition, the
direction from right to left in the three cases is straightforward. Conversely, the proof is also
easy if one takes into account the results of Theorem 3.2 and the fact that standard chains are
subalgebras of the strict hyperreal ones.

In the cases of standard and rational-chain semantics, the strong completeness has been always
proved in the literature by showing that the logic enjoys an apparently stronger property: the
embedding property. However, in the previous section we have proved that they are actually
equivalent. These rational-chain and real-chain embedding properties have been already studied
in [22] for axiomatic extensions of MTL. We will consider now also the corresponding property
for the remaining semantics:

Notation Given a (∆-)core fuzzy logic L we define:

• L has the real-chain embedding property (R-E, for short) iff any countable L-chain14 can be
embedded into a standard L-chain.

12Although it would be more homogeneous to use always the term real-chain we rather prefer to respect the
strong tradition in Fuzzy Logic that has been using standard instead.

13In order to obtain an ultrapower of [0, 1] which does not result into an isomorphic image of [0, 1] we must
prevent the ultrafilter from being principal, as it is well known, but also from being closed under intersections of
countable families (we will justify this requirement in Subsection 5.3).

14When dealing with a class that does not contain the trivial chain (such as the classes of standard, rational and
hyperreal chains) it is obvious that we cannot embed there the trivial chain. Therefore, strictly speaking, in the
embedding properties we should write “any non-trivial countable L-chain”; however, as it is always clear from the
context, we will often omit this obvious constraint.
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• the rational-chain, hyperreal-chain, strict hyperreal-chain, and finite-chain embedding prop-
erties are defined accordingly (we use shorthands: Q-E, R?-E, R?s-E, and F-E).

Sometimes standard or rational-chain completeness properties can be refined to some subclass
of standard or rational algebras; sometimes even it is enough to consider only one algebra. When
the standard completeness (resp. rational-chain completeness) can be proved with respect to a
particular standard algebra (resp. rational algebra) which is the intended semantics for the logic,
we call it canonical standard completeness (resp. canonical rational-chain completeness). These
kinds of completeness are a matter of special interest when one considers the logic of the variety
generated by the algebra defined by one particular standard or rational algebra, because sometimes
this algebra is the intended semantics for the logic.

Definition 4.2. Let ∗ be a left-continuous t-norm. L∗ will denote the axiomatic extension of
MTL whose equivalent algebraic semantics is V([0, 1]∗).

It is clear, by definition, that for every left-continuous t-norm ∗, the logic L∗ enjoys the RC
restricted to [0, 1]∗, i.e. the canonical RC. For continuous t-norms we can prove even more:

Proposition 4.3 ([23]). For every continuous t-norm ∗, the logic L∗ has the canonical FSRC.

Nevertheless, it can be improved to SRC only for Gödel logic:

Proposition 4.4 ([23]). An axiomatic extension L of BL has the SRC iff L = G.

4.1. Standard completeness
As mentioned, the usual strategy to prove the SRC has consisted in showing in a constructive

way that every countable chain, is embeddable into a standard chain of the same variety. This
kind of construction was used ad hoc for Gödel logic G in [36], and for the logics NM and WNM
in [24]. It was later generalized to MTL in [47] and refined in [56] as we sketch now:

Completion of countable MTL-chains: Let A be a countable MTL-chain. A standard MTL-
chain [0, 1]∗ and an embedding h : A ↪→ [0, 1]∗ are built by following next steps:

• For every a ∈ A, suc(a) is either the successor of a in the order of A if it exists or suc(a) = a
otherwise.

• B = {〈a, 1〉 | a ∈ A} ∪ {〈a, q〉 | ∃a′ ∈ A such that a 6= a′ and suc(a′) = a, q ∈ Q ∩ (0, 1)}.

• Consider the lexicographical order � on B.

• Define the following monoidal operation on B:

〈a, q〉 ◦ 〈b, r〉 =
{

min�{〈a, q〉, 〈b, r〉} if a&Ab = min{a, b}
〈a&Ab, 1〉 otherwise.

• The ordered monoid 〈A,&A, 1A,≤〉 is embeddable into 〈B, ◦, 〈1A, 1〉,�〉 by mapping every
a ∈ A to 〈a, 1〉.

• B = 〈B, ◦, 〈1A, 1〉,�〉 is a densely ordered countable monoid with maximum and minimum,
so it is isomorphic to a monoid B′ = 〈[0, 1]Q, ◦′, 1,�′〉. Obviously, 〈A,&A, 1A,≤〉 is also
embeddable into B′. Let h be such embedding. Moreover, restricted to h[A], the residuum
of ◦′ exists, call it ⇒, and h(a)⇒ h(b) = h(a→A b).

• B′ is completed to [0, 1] by defining:

∀α, β ∈ [0, 1] α ∗ β = sup{x ◦′ y | x ≤ α, y ≤ β, x, y ∈ [0, 1]Q}.
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• ∗ is a left-continuous t-norm, so it defines a standard MTL-algebra [0, 1]∗, and h is the
desired embedding.

Therefore, we obtain the following sufficient condition for the SRC:

Proposition 4.5. Let L be an axiomatic extension of MTL. If for every countable L-chain, its
completion given by the construction described above is an L-chain, then L enjoys the SRC.

The SRC for MTL, SMTL, G, WNM and CnMTL can be proved by applying the previous
proposition. Nevertheless, some important equationally definable properties are not preserved
under this construction and thus the method does not work to prove the SRC for some axiomatic
extensions of MTL. In [22] the authors prove that the completion of Jenei and Montagna does
not preserve divisibility, cancellation and involution in general. Actually, it is well known that  L
and Π do not enjoy the SRC (see e.g. [36]). Moreover, in [55] it is proved that the SRC also fails
for the logics BL, SBL, ΠMTL, and WCMTL. But the SRC for IMTL can still be proved in [22]
by modifying the previous construction. We sketch it again.

Completion of countable involutive MTL-chains: Let A be a countable IMTL-chain. A
standard IMTL-chain [0, 1]∗ and an embedding h : A ↪→ [0, 1]∗ are built by following next steps:

• Define the ordered monoid 〈B, ◦, 〈1A, 1〉,�〉 as before.

• Modify the monoidal operation in the following way:

〈a, q〉 ⊗ 〈b, r〉 =
{
〈0A, 1〉 if a = suc(¬b), q + r ≤ 1
〈a, q〉 ◦ 〈b, r〉 otherwise.

• As before, the ordered monoid 〈A,&A, 1A,≤〉 is embeddable into 〈B,⊗, 〈1A, 1〉,�〉 which is
isomorphic to a monoid B′ = 〈[0, 1]Q, ◦′,�′〉. Again, B′ is completed to [0, 1] by defining:

∀α, β ∈ [0, 1] α ∗ β = sup{x ◦′ y | x ≤ α, y ≤ β, x, y ∈ [0, 1]Q}.

• ∗ is a left-continuous t-norm with an involutive negation, so it defines a standard IMTL-
algebra [0, 1]∗, and h is the desired embedding.

Proposition 4.6. Let L be an axiomatic extension of IMTL. If for every countable L-chain, its
completion given by the construction above is an L-chain, then L enjoys the SRC.

The SRC for IMTL, NM, and CnIMTL can be proved by applying this construction. In [31]
the authors use the real-embedding property of some core fuzzy logics (like MTL, SMTL, etc.)
and show this property (and hence the strong standard completeness) for the expansions of these
logics with ∆ and an independent involutive negation ∼ (analogously for partial embeddings and
finite strong standard completeness). We do not want to go into details here about the logics
L∼ and the method mentioned above (see [31] for the details). We only observe that as we now
know the equivalence between R-E and SRC, we could use their method in general and so we can
conclude (also using Proposition 3.16) that: the logic L has the SRC (FSRC respectively) iff the
logic L∼ has the SRC (FSRC respectively).

As regards to the FSRC, it is obviously satisfied by the logics that enjoy the SRC. For the
remaining logics it has been studied in many papers. Interestingly, rather than using the most
straight equivalence given in Theorem 3.2, it has been usually proved by showing that the class
of all chains is partially embeddable into the class of standard chains (i.e. using Theorem 3.8).
This has been done for Π (in [41]),  L (see e.g. [36]), BL, and SBL (in [14]) by using essentially
Gurevich-Kokorin Theorem. ΠMTL also enjoys the FSRC as it was proved by Horč́ık in [43] by
means of a different construction. Since his method it is not so well known, we sketch it now.
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Horč́ık’s method: Take a ΠMTL-chain A = 〈A,&,→,∧,∨, 0A, 1A〉 and a finite subset G ⊆ A.
Let S be the submonoid of A generated by G. By using Dickson’s lemma in [43] it is proved
that S is residuated and the residuum is given by: a → b = max{z ∈ S : a&z ≤ b}. Thus, the
enriched submonoid S = 〈S,&,→,∧,∨, 0A, 1A〉 is a countable MTL-chain. Moreover, since its
monoidal operation is just the restriction of the monoidal operation of A, it is clear that it is also
cancellative, hence S is a ΠMTL-chain.

Now define a new chain over the set S′ = {〈s, r〉 | s ∈ S \ {0A}, r ∈ (0, 1]}∪ {〈0A, 1〉}, with the
lexicographical order ≤lex and the following operations:

〈a, x〉&′〈b, y〉 = 〈a&b, xy〉

〈a, x〉 →′ 〈b, y〉 =
{
〈a→ b, 1〉 if a&(a→ b) < b,
〈a→ b,min{1, y/x}〉 otherwise.

So S ′ = 〈S′,&′,→′,≤lex, 〈0
A
, 1〉, 〈1A, 1〉〉 is an MTL-chain and there is an embedding Ψ : S → S ′

defined by Ψ(a) = 〈a, 1〉. Moreover S ′ is cancellative.
Finally, as proved in [42], the set S′ is order isomorphic to the real unit interval [0, 1], so there

is a standard ΠMTL-chain B and an isomorphism Φ : S ′ → B. The function Φ ◦ Ψ is a partial
embedding of G into B.

Horč́ık’s method has been used in [55] to prove the FSRC for several logics, WCMTL among
them. Finally, for some known axiomatic extensions of MTL the FSRC fails (see e.g. [59] and
later in Example 4.14), but in all these cases the RC is also false.

Open problem 4.7. For which core fuzzy logics does the implication RC ⇒ FSRC hold?15

4.2. Hyperreal-chain and Rational-chain Completeness
As we will see, hyperreal-chain and rational-chain completeness have many things in common

so we deal with them together in this section. Let L be a (∆-)core fuzzy logic, then by LQ and
LR? we denote the classes of elements of L whose lattice reduct is respectively [0, 1]Q and some
ultrapower of [0, 1].

Lemma 4.8. Let L be a (∆-)core fuzzy logic. Then ISPU (LQ) = IS(LR?).

Proof. Clearly, it suffices to prove that LQ ⊆ IS(LR?) and LR? ⊆ ISPU (LQ). Now let A ∈ LQ,
B ∈ LR? and A0 and B0 be their lattice reducts. Then A0 and B0 are elementarily equivalent,
being totally and densely ordered with maximum and minimum. Therefore, by the Keisler-Shelah
theorem they have isomorphic ultrapowers, say A?0 and B?0 . The ultraproduct also induces the
structure of L-algebra in A?0 and B?0 : first define the realization of operations in the direct product,
and then consider the quotient modulo the ultrafilter. Thus from A?0 and B?0 we obtain L-algebras
A? and B? which are ultraproducts of A and B respectively and whose lattice reducts are isomor-
phic. Now A?0 is an ultraproduct of B0 which is in turn an ultraproduct of [0, 1]. Thus A?, having
as lattice reduct an ultraproduct of [0, 1], is a member of LR? , and A, being a subalgebra of A?,
is in IS(LR?).

We prove the opposite inclusion. By the Löwenheim-Skolem theorem, B has a countable and
dense elementary subalgebra Be whose lattice reduct, being countable, dense and with maximum
and minimum, is isomorphic to [0, 1]Q. Hence Be ∈ LQ. Now B and Be are elementarily equivalent,
therefore B and Be have isomorphic ultrapowers. Summing-up, B embeds into an ultrapower of
Be, which is a member of LQ. This ends the proof.

Theorem 4.9. Let L be a (∆-)core fuzzy logic. The following are equivalent:

1. L has the FSQC.

15When the class of standard chains is restricted to some special kind of chain, in order to obtain a canonical
completeness result, we already know that this implication fails as several examples of logics with truth-constants
show in [23, 29].
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2. L has the SR?C.
3. L has the SQC.
4. L has the FSR?C.

Furthermore, L has the QC if and only if L has the R?C.

Proof. 1.⇒ 2.: It is a direct consequence of the previous lemma and Theorems 3.11 and 3.5.
2. ⇒ 3.: We assume T 6`L ϕ and want to show that T 6|=LQ ϕ. By the SR?C we obtain an

L-chain B ∈ LR? and a B-evaluation e such that e[T ] ⊆ {1} and e(ϕ) < 1. Let

S = {e(p) | p a variable in T ∪ {ϕ}}.

Then S is countable, and by the Löwenheim-Skolem theorem there is a countable elementary
subalgebra C of B containing S. Since it is an elementary subalgebra of B, C is a densely ordered
L-chain. Since C is countable and has maximum and minimum, its lattice reduct is isomorphic
to [0, 1]Q, therefore C ∈ LQ. Moreover since S ⊆ C, e is also a C-evaluation, e[T ] ⊆ {1}, and
e(ϕ) < 1. Thus T 6|=LQ ϕ.

As the implications 3. ⇒ 1. and 2. ⇒ 4. are trivial, all we need to complete the proof is the
implication 4.⇒ 2. This is a simple consequence of Corollary 3.14.

The proof of the final claim: assume that L enjoys the QC and suppose that 6`L ϕ for some
formula ϕ. Then, by the QC, there is some rational L-chain A and an evaluation e on A such
that e(ϕ) 6= 1. By Lemma 4.8, we have A ∈ ISPU (LQ) = IS(LR?), so A can be embedded into a
hyperreal L-chain, and hence we have a hyperreal countermodel for ϕ. The converse direction is
proved in the same way as the implication 2.⇒ 3.

Notice that this theorem extends a previous result from [22] that proved that the FSQC and the
SQC are equivalent for axiomatic extensions of MTL. Now we turn our attention to the relation
between standard completeness and rational-chain and hyperreal-chain completeness. First, we
consider the weaker completeness properties.

Theorem 4.10. Let L be a (∆-)core fuzzy logic with RC. Then L has the QC.

Proof. Assume that L enjoys the RC and suppose that 6`L ϕ for some formula ϕ. Then, by the
RC, there is some standard L-chain A and an evaluation e on A such that e(ϕ) 6= 1. Let B be the
countable subalgebra of A generated by the values of the subformulae of ϕ. Now, again by the
Löwenheim-Skolem theorem, we can obtain a countable elementary subalgebra C of A extending
B. Then C is isomorphic to a rational L-chain where ϕ is also refuted. Thus, L enjoys the QC.

By using Corollary 3.15 and Theorem 4.9, we obtain:

Proposition 4.11. Let L be a (∆-)core fuzzy logic with the FSRC. Then L has the SR?C and
the SQC.

This proposition applies for example to the logics  L, Π, G, BL, SBL, ΠMTL16 and WCMTL
which are only finite strong standard complete, but they are strong rational-chain complete. This
result is apparently a bit strange and deserves some explanation. Next we will comment about
this fact in the case of  L and Π.

Remark 4.12. It is well known that all standard MV-chains (resp. standard Π-chains) are iso-
morphic to the canonical one defined over [0, 1] by the  Lukasiewicz (resp. product) t-norm and its
residuum [0, 1] L (resp. [0, 1]Π). It is also well known that the variety and quasivariety generated by
[0, 1] L (resp. [0, 1]Π) coincide with the variety and quasivariety generated by [0, 1]Q L (resp. [0, 1]QΠ).
So, it is clear that the infinite-valued  Lukasiewicz (resp. product) logic has the finite strong com-
pleteness with respect to [0, 1] L and [0, 1]Q L (resp. [0, 1]Π and [0, 1]QΠ). Moreover, the example that

16The SQC for ΠMTL had been already proved in [22].
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refutes the SRC for  Lukasiewicz (resp. product) logic also proves that  Lukasiewicz (resp. product)
logic is not strong complete with respect to the chain [0, 1]Q L (resp. [0, 1]QΠ), i.e. the canonical SQC
fails as well. However, this failure does not prevent these logics from enjoying the SQC. The main
fact behind this seemingly strange result is that, unlike the situation in standard chains, there are
infinitely many non-isomorphic rational chains. Therefore, the SQC is actually a completeness
result with respect to an infinite family of chains.

We present in Figure 1 a diagram17 representing explicitly the relations between standard,
rational-chain and hyperreal-chain completeness and embedding properties. Taking into account
the Jenei and Montagna’s method described in the last subsection, in [22] the authors gave the
following definition also used in the diagram.

Definition 4.13 ([22]). Let L be an axiomatic extension of MTL. We say that L has the Q-E+

iff it has the Q-E and given a rational L-chain A, the extension of A to a standard chain defined
in the last step of the corresponding embedding method (depending on whether A is or is not
involutive) is also an L-chain.

Figure 1 depicts also the implications that we can refute. This is done by means of some
counterexamples. First we will present as example one axiomatic extension of BL firstly given in
[60] and used in [22] to refute some implications.

Example 4.14. Let Π? be the logic defined as the axiomatic extension of BL obtained by adding
the following schema:

(ϕ ∧ ¬ϕ→ 0) ∧ ((ϕ→ ϕ&ϕ)→ ¬ϕ ∨ ϕ)

It is obvious that Π?-chains are SBL-chains that have no idempotents different from the top
and the bottom of the chain. Namely, an obvious computation proves that,

(1) [0, 1]Π is the only standard Π?-chain.

(2) There are Π?-chains that are not Π-chains. In fact, the chains of the variety are the ones
obtained by removing the idempotents separating the components (the idempotents different
from the top and the bottom of the chain) in any ordinal sum of product chains.

Therefore, in the logic Π? all the standard completeness properties fail, as well as the R-E and
the Q-E+, but it still enjoys the Q-E (and thus, SQC, FSQC and QC), as proved in [22].

Therefore, the example refutes the implications: Q-E ⇒ Q-E+, Q-E ⇒ R-E, SQC ⇒ SRC,
FSQC ⇒ FSRC and QC ⇒ RC. The implication FSRC ⇒ SRC is refuted by many counterex-
amples, for instance:  L, Π, BL, SBL or ΠMTL.

Finally, some implications are neither proved nor refuted and are listed below as open problems.

Open problem 4.15. For which core fuzzy logics are the following implications true: R-E ⇒
Q-E+, RC⇒ FSRC, and QC⇒ FSQC?

The standard and rational-chain completeness and embedding properties for the considered
examples are collected in Table 3.

4.3. FEP, SFMP, FMP and finite-chain completeness
Finite chains provide also an interesting many-valued semantics for some of the considered

logics. We will consider again the three kinds of completeness properties. As we will see, these
properties are closely related to some well-known algebraic properties, namely the finite embed-
dability property, the strong finite model property and the finite model property. First, let us
recall the involved definitions.

17This diagram is an extension of the one given in [22] for axiomatic extensions of MTL.
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Logic RC FSRC SRC = R-E QC FSQC = SQC = Q-E Q-E+

MTL, IMTL, SMTL Yes Yes Yes Yes Yes Yes
WCMTL, ΠMTL Yes Yes No Yes Yes No

BL, SBL,  L, Π Yes Yes No Yes Yes No
Π? No No No Yes Yes No

G, WNM, NM,
CnMTL, CnIMTL Yes Yes Yes Yes Yes Yes

CPC No No No No No No

Table 3: Standard and rational-chain completeness and embedding properties for some axiomatic extensions of
MTL.

Figure 1: Standard, rational-chain and hyperreal-chain completeness properties.

Definition 4.16. Given a class K of algebras, Kfin will denote the class of its finite members.
We say that a class K of algebras has:

• the finite embeddability property (FEP, for short) if and only if it is partially embeddable
into Kfin.

• the strong finite model property (SFMP, for short) if and only if every quasiequation that
fails to hold in K can be refuted in some member of Kfin.

• the finite model property (FMP, for short) if and only if every equation that fails to hold in
K can be refuted in some member of Kfin.

It is clear that a variety has the FMP if and only if it is generated by its finite members and a
quasivariety has the SFMP if and only if it is generated (as a quasivariety) by its finite members.
Therefore, we obtain the following result:

Theorem 4.17. Let L be a (∆-)core fuzzy logic. Then:

(i) L enjoys the FC if and only if L enjoys the FMP.

(ii) L enjoys the FSFC if and only if L enjoys the SFMP. Moreover, if the language is finite,
these properties are also equivalent to the FEP for L.

As regards to the SFC, we know from the general results in Section 3 that it is equivalent to
the F-E. In fact, it is equivalent to the fact that all chains are finite and there is maximum length,
as the following proposition shows.

Proposition 4.18. Let L be a (∆-)core fuzzy logic. The following are equivalent:

(i) L enjoys the SFC,
(ii) L enjoys the F-E,
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(iii) all L-chains are finite,
(iv) there is a natural number n such that the length of each L-chain is less or equal than n, and
(v) there is a natural number n such that `L

∨
i<n(xi → xi+1).

Proof. The equivalence of (i), (ii) and (iii) is trivial.
(iii) ⇒ (iv) : If all L-chains are finite then there must a bound for their length, because

otherwise by means of an ultraproduct we could build an infinite L-chain.
(iv) ⇒ (v) : Assume (iv) and take an arbitrary L-chain A and elements a0, . . . an ∈ A. Since

A has at most n elements it is impossible that a0 > a1 > . . . > an, thus there is some k such that
ak ≤ ak+1, i.e. ak →A ak+1 = 1A. Therefore, A |=

∨
i<n(xi → xi+1) ≈ 1.

(v) ⇒ (iii) : Suppose that `L

∨
i<n(xi → xi+1) and take an arbitrary L-chain A. We know

that A |=
∨
i<n(xi → xi+1) ≈ 1. If there would be n + 1 different elements in A then we could

choose a0, . . . an ∈ A such that a0 > a1 > . . . > an. Then ai →A ai+1 6= 1A, for every i < n, and
A would falsify the equation, a contradiction.

Corollary 4.19. For every (∆-)core fuzzy logic L and every natural number n, the axiomatic
extension Ln obtained by adding the schema

∨
i<n(xi → xi+1), is a (∆-)core fuzzy logic which is

strongly complete with respect the L-chains of length less or equal than n, and hence enjoys the
SFC.

Open problem 4.20. For which core fuzzy logics is the implication FC⇒ FSFC true?

In [8] the authors introduce a very useful method for proving the FEP for the variety of
commutative and integral residuated lattices. Then Ono (private communication) noticed that
the method works for MTL, SMTL and IMTL as well. In this section we overview a simplification
of the above method. We recall the following result from [8].

Lemma 4.21. Let V be a variety, and let Vsi be the class of all subdirectly irreducible members
of V. Then V has the FEP whenever Vsi does.

Definition 4.22. A partial order ≤ is an inverse well quasi order (iwqo for short) iff its ascending
chains and its antichains are all finite.

We also recall the following:

Lemma 4.23. (Dickson Lemma). The product of two iwqo is an iwqo.

Let us fix from now on a subdirectly irreducible (hence linearly ordered) MTL-algebra A and
its finite partial subalgebra P. Without loss of generality we assume that 0, 1 ∈ P .

Lemma 4.24. The submonoid M of A generated by P is an iwqo and residuated. Moreover, if
a, b, a→ b ∈M , then the residuum a⇒ b of a and b in M is a→ b.

Proof. Let P = {p1, . . . , pn}. Then every element m ∈ M has the form ph1
1 · . . . · phnn . Clearly,

the map Φ sending 〈h1, . . . , hn〉 to ph1
1 · . . . · phnn is an order preserving monoid homomorphism

from 〈Nn,+,≥〉 intoM. It is clear that N is an iwqo with the inverse natural order, therefore Nn
ordered componentwise is also an iwqo by Lemma 4.23. Finally, Φ is order-preserving, therefore
M is an iwqo. Indeed, the presence of an infinite antichain in M would imply the presence of an
infinite antichain in Nn, and the presence of an infinite ascending chain in M would imply the
presence of either an infinite ascending chain or an infinite antichain in Nn.

SinceM is a totally ordered iwqo, it follows that every non-empty subset of M has a maximum.
In particular, for all a, b ∈ M the set {m ∈ M | a ·m ≤ b} has a maximum, and such maximum
is the residuum of a and b in M (denoted by a ⇒ b). Now clearly a ⇒ b ≤ a → b, as M ⊆ A.
If in addition a, b, a → b ∈ M , then a → b is the maximum z ∈ M such that z · a ≤ b, therefore
a⇒ b = a→ b.

Lemma 4.25. For every p ∈ P , the set M ⇒ p = {m⇒ p | m ∈M} is finite.
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Proof. Suppose not. Then sinceM is linearly ordered, M ⇒ p contains either an infinite ascending
chain or an infinite descending chain. The first case is excluded because M is an iwqo. On the
other hand, if m1 ⇒ p > m2 ⇒ p > . . . > mn ⇒ p > . . . is a descending chain, then it must be
m1 < m2 < . . . < mn < . . ., which is impossible because M is an iwqo.

Corollary 4.26. The set M ⇒ P = {m⇒ p | m ∈M,p ∈ P} is finite.

Lemma 4.27. M ⇒ P is closed under ⇒.

Proof. Let m1 ⇒ p1, m2 ⇒ p2 ∈ M ⇒ P . Since M is a residuated lattice wrt ⇒, we have that
(m1 ⇒ p1)⇒ (m2 ⇒ p2) ∈M . By residuation we obtain (m1 ⇒ p1)⇒ (m2 ⇒ p2) = (m2 · (m1 ⇒
p1)) ⇒ p2. Since M is closed under · and ⇒, m2 · (m1 ⇒ p1) ∈ M , and (m1 ⇒ p1) ⇒ (m2 ⇒
p2) = (m2 · (m1 ⇒ p1))⇒ p2 ∈M ⇒ P .

Summing-up, M ⇒ P is a finite implicative subreduct of M (equipped with implication ⇒).
We now define a monoid operation � such that ⇒ is the residuum of � in M ⇒ P .

Definition 4.28. Let for x, y ∈M ⇒ P ,

(1) x� y = min{z ∈M ⇒ P : x ≤ y ⇒ z}.

(Note that such a minimum exists because M ⇒ P is finite and linearly ordered; also note that
definition (1) implies that x� y ≥ x · y). The algebra obtained in this way is denoted by M⇒ P.

Lemma 4.29. � is a commutative and weakly increasing monoid operation, and⇒ is its residuum
in M⇒ P. Moreover if a, b, a · b ∈ M ⇒ P , then a · b = a � b. Thus M⇒ P is an MTL-chain
and has P as a partial subalgebra.

Proof. Since x ⇒ (y ⇒ z) = y ⇒ (x ⇒ z), the definition of � immediately implies that � is
commutative. That � is weakly increasing also follows from the definition of � and from the fact
that ⇒ is weakly increasing in the second argument and weakly decreasing in the first one. We
now prove that

(2) (x� y)⇒ z = x⇒ (y ⇒ z)

which immediately implies that ⇒ is the residuum of �. Using the residuation property in M
and the definition of �, we obtain:

u ≤ x⇒ (y ⇒ z) iff x ≤ u⇒ (y ⇒ z)
iff x ≤ y ⇒ (u⇒ z)
iff x� y ≤ u⇒ z
iff u ≤ (x� y)⇒ z,

which immediately gives (2). Finally, associativity follows from the definition of � and from (2):

(x� y)� z ≤ u iff ((x� y)� z)⇒ u = 1
iff (x� y)⇒ (z ⇒ u) = 1
iff x⇒ (y ⇒ (z ⇒ u)) = 1
iff x⇒ ((y � z)⇒ u) = 1
iff (x� (y � z))⇒ u = 1
iff x� (y � z) ≤ u,

Finally assume that a, b, a · b ∈M ⇒ P . Then we have a · b ≤ z iff a ≤ b⇒ z iff a� b ≤ z. Thus
a · b = a� b.

We have thus shown:

Theorem 4.30. The variety of MTL-algebras has the FEP.
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The result may be extended to SMTL and to IMTL:

Theorem 4.31. Let V be either the variety of IMTL-algebras or the variety of SMTL-algebras.
Then V has the FEP.

Proof. For SMTL-algebras, the construction of Theorem 4.30 works without changes. Indeed if
0, 1 ∈ P , then for any m ∈ M , m ⇒ 0 is either 0 or 1, therefore the same is true in M⇒ P (cf.
Lemmata 4.24 and 4.27). Hence M⇒ P is an SMTL-algebra.

For IMTL-algebras, one may assume without loss of generality that P is closed under ¬. (Since
¬ is involutive, closing under ¬ does not destroy finiteness). Let us construct the algebraM⇒ P
as in Definition 4.28. To conclude the proof, it is sufficient to show that ¬ is involutive inM⇒ P.
Let x = m ⇒ p ∈ M ⇒ P . We first prove that in M one has z ≤ m ⇒ p iff z · m · ¬p = 0,
where ¬p is the negation of p in M (by Lemma 4.24, the negations of p in M and in A are the
same). The left-to-right implication is trivial; for the opposite direction, if z ·m · ¬p = 0, then
z · m ≤ ¬¬p = p, and finally z ≤ m ⇒ p. This implies that m ⇒ p = ¬(m · ¬p). Thus every
element of M is the negation in M of some element of M, therefore it coincides with its double
negation (the identity ¬¬¬x = ¬x holds in any MTL-algebra). By Lemma 4.27,M⇒ P is closed
under ⇒, therefore it is closed under negation. Hence ¬¬x = x also in M⇒ P.

Logic FC = FMP FSFC = FEP = SFMP SFC = F-E
MTL, IMTL, SMTL Yes Yes No
WCMTL, ΠMTL, Π No No No
BL, SBL,  L, G, NM,

WNM, CnMTL, CnIMTL Yes Yes No
 Ln, Gn, CPC Yes Yes Yes

Table 4: FEP, FMP and finite-chain completeness properties for some axiomatic extensions of MTL.

5. Completeness in first-order logics

We start by recalling the definitions of the basic concepts of predicate fuzzy logic (for detailed
description see a recent survey paper [40]). Let us assume from now on that L is some fixed
(∆-)core fuzzy logic.

In first-order fuzzy logics we restrict the semantics to L-chains only. For each L-chain A, an
A-structure for a predicate language Γ is M = 〈M, 〈PM〉P∈Γ, 〈fM〉f∈Γ〉 where M 6= ∅, for each
n-ary predicate symbol P , PM is an n-ary A-fuzzy relation on M (a mapping Mn → A), and
for each n-ary function symbol f , fM is a mapping Mn → M . Having this, one defines for each
formula ϕ, the truth value ‖ϕ‖AM,v of ϕ in M determined by the L-chain A and an evaluation v of
free variables of ϕ in M in the usual (Tarskian) way. In particular, the truth value of a universally
quantified formula is the infimum (if it exists) of the truth values of all its instances, similarly for
∃ and supremum. A structure M is safe if the truth value is defined for each ϕ and v.

By 〈M,A〉 |= ϕ we denote that ‖ϕ‖AM,v = 1A for each M-evaluation v. When A is known from
the context we write M |= ϕ. We say that 〈M,A〉 is a model of a theory (i.e. a set of sentences)
T to mean that A is an L-chain, M is a safe A-structure and 〈M,A〉 |= α for each α ∈ T . To
simplify matters, we use the expression “〈M,A〉 is a model” meaning that 〈M,A〉 is a model of
the empty theory. If we say “for each model 〈M,A〉” we mean “for each L-chain A and each safe
A-structure M”. Finally, by ‖ϕ(a1, . . . , an)‖〈M,A〉 we mean ‖ϕ(x1, . . . , xn)‖AM,v for v(xi) = ai.

Now we define the corresponding predicate logic for propositional (∆-)core fuzzy logics. We
use the axioms used in the monograph [36] to obtain the predicate variant of Basic fuzzy Logic
BL and the axioms for crisp equality (see [40]) for more details).

Definition 5.1. Let L be a (∆-)core fuzzy logic and Γ a predicate language with equality. The
logic L∀ has the deduction rules of L and generalization (from ϕ infer (∀x)ϕ) and its axioms are:
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(P) the axioms resulting from the axioms of L by the substitution of
propositional variables with formulae of Γ,

(∀1) (∀x)ϕ(x)→ ϕ(t), where t is substitutable for x in ϕ,
(∃1) ϕ(t)→ (∃x)ϕ(x), where t is substitutable for x in ϕ,
(∀2) (∀x)(χ→ ϕ)→ (χ→ (∀x)ϕ), where x is not free in χ,
(∃2) (∀x)(ϕ→ χ)→ ((∃x)ϕ→ χ), where x is not free in χ,
(∀3) (∀x)(χ ∨ ϕ)→ (χ ∨ (∀x)ϕ), where x is not free in χ,
(≈1) (∀x)(∀y)((x ≈ y) ∨ ¬(x ≈ y)),
(≈2) (∀x)x ≈ x,
(≈3) (∀x)(∀y)(∀~z)(x ≈ y → (ϕ(x, ~z)↔ ϕ(y, ~z))), where y is substitutable for x in ϕ.

The completeness theorem for first-order BL was proven in [36] and the completeness theorems
of other predicate fuzzy logics defined in the literature were proven in the corresponding papers.
The following general formulation is from the paper [39].

Theorem 5.2. Let L be a (∆-)core fuzzy logic, Γ a countable predicate language, T a theory, and
ϕ a formula. Then the following are equivalent:

• T `L∀ ϕ.

• 〈M,A〉 |= ϕ for each (countable) model 〈M,A〉 of the theory T .

For the results in the next subsection we also need the following definitions of elementary
equivalence, elementary embedding, full diagram and σ-embedding.

Definition 5.3. Two models 〈M1,B1〉 and 〈M2,B2〉 of a predicate language Γ are elementarily
equivalent if for each Γ-formula ϕ it holds: 〈M1,B1〉 |= ϕ iff 〈M2,B2〉 |= ϕ.

Definition 5.4. An elementary embedding of a model 〈M1,B1〉 of a language Γ1 into a model
〈M2,B2〉 of a language Γ2 ⊇ Γ1 is a pair 〈f, g〉 such that:

1. f is an injection of the domain of M1 into the domain of M2.
2. g is an embedding of B1 into B2.
3. g(‖ϕ(a1, . . . , an)‖〈M1,B1〉) = ‖ϕ(f(a1), . . . , f(an))‖〈M2,B2〉 holds for each Γ1-formula ϕ(x1, . . . , xn)

and a1, . . . , an ∈M1.

Clearly if a model 〈M1,B1〉 can be elementarily embedded into a model 〈M2,B2〉, then it is
elementarily equivalent to the Γ1-reduct of 〈M2,B2〉.

Definition 5.5. Let L be a logic in a propositional language L, B an L-chain, Γ be a predicate
language and 〈M,B〉 a model. Then we define:

• Γ〈M,B〉 is the predicate language resulting from Γ by adding a constant ca for each a ∈ M
and a nullary predicate symbol Pb for each b ∈ B.

• M∗ is the Γ〈M,B〉-model resulting from M by setting (ca)M∗ = a for each a ∈ M and
(Pb)M∗ = b for each b ∈ B.

• FDIAG〈M,B〉 = Th(〈M∗,B〉) (the set of all sentences true in 〈M∗,B〉).

The set FDIAG〈M,B〉 is called the full diagram of the model 〈M,B〉 (this is a strengthening
of the notion of diagram defined in the context of fuzzy logics in [39]).

Definition 5.6. Let A,B be two algebras of the same type with (defined) lattice operations. We
say that an embedding f : A → B is a σ-embedding if f(supC) = sup f [C] (whenever supC exists)
and f(inf D) = inf f [D] (whenever inf D exists) for each countable C,D ⊆ A.
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5.1. General completeness results
Like in the propositional case we introduce several notions of completeness w.r.t. a class of

algebras K. We restrict ourselves to at most countable predicate languages (in fact, we could define
the notion of κ-K-completeness for each cardinal κ, but this would make the paper unnecessarily
complex).

Definition 5.7. Let L be a (∆-)core fuzzy logic. We say that L∀ has the SKC if for each countable
language Γ, theory T , and formula ϕ the following are equivalent:

• T `L∀ ϕ.

• 〈M,A〉 |= ϕ for each A ∈ K and each countable model 〈M,A〉 of the theory T .

We say that L∀ has the FSKC if the above condition holds for finite theories. Finally, we say
that L∀ has the KC if the above condition holds for the empty theory.

Lemma 5.8. Let L be a (∆-)core fuzzy logic enjoying the SKC. Then for each language Γ, theory
T , and a directed18 set of formulae Ψ the following are equivalent:

• T 6`L∀ Ψ.

• there is a chain A ∈ K and a model 〈M,A〉 of T such that 〈M,A〉 6|= Ψ.

Proof. The proof is the same as in the propositional case (see Lemma 3.4). The only difference is
that instead of using an unused propositional variable we extend the predicate language by a new
nullary predicate.

As in the propositional case we provide a characterization for the strong completeness with
respect to an arbitray class of chains, but here the equivalent property is not purely algebraic (as
it was in Theorem 3.5) but it is written in a model-theoretic fashion.

Theorem 5.9. Let L be a (∆-)core fuzzy logic. Then the following are equivalent:

(i) L∀ has the SKC.

(ii) For every countable L-chain A and every model 〈M,A〉 there is an L-chain B ∈ K and a
model 〈M′,B〉 such that 〈M,A〉 can be elementarily embedded into 〈M′,B〉.

(iii) For every countable L-chain A and every model 〈M,A〉 there is an L-chain B ∈ K and a
model 〈M′,B〉 such that 〈M,A〉 is elementarily equivalent to 〈M′,B〉.

Proof. The only non-trivial part to prove is (i) ⇒ (ii): Let us define T = FDIAG〈M,A〉 and
Ψ = {ϕ is a sentence | ϕ 6∈ FDIAG〈M,A〉}. Observe that Ψ is directed and T 6`L∀ Ψ. Thus there
is an L-chain B ∈ K and a model 〈M′,B〉 of T such that 〈M′,B〉 6|= Ψ (due to the SKC and the
previous lemma).

We define f(a) = (ca)M′ and g(b) = ‖Pb‖〈M
′,B〉 for every a ∈ M and b ∈ A. Is 〈f, g〉 an

elementary embedding of the model 〈M,A〉 into the model 〈M′,B〉? We have to prove the three
parts of the definition of an elementary embedding:

Part 1.: Assume that a 6= b and f(a) = f(b), i.e. (ca)M′ = (cb)M′ . Thus 〈M′,B〉 |= ca ≈ cb.
As 〈M′,B〉 |= ¬(ca ≈ cb) (since 〈M′,B〉 |= T ) we obtain a contradiction.

Part 3.: We write a chain of equalities: g(‖ϕ(a1, . . . an)‖〈M,A〉) = ‖P‖ϕ(a1,...an)‖〈M,A〉‖〈M
′,B〉 =

‖P‖ϕ(ca1 ,...can )‖〈M∗,A〉‖〈M
′,B〉 = ‖ϕ(ca1 , . . . can)‖〈M′,B〉 = ‖ϕ(f(a1), . . . f(an))‖〈M′,B〉 (the first equal-

ity is the definition of g, the second one is straightforward, the third one is due to the fact that
〈M′,B〉 |= T and the last one is the definition of f).

18The definition is analogous to the propositional case, see Definition 3.3. By T 6`L∀ Ψ we mean that T 6`L∀ ψ
for each ψ ∈ Ψ (analogously for |=).
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Part 2.: We show that g is a homomorphism. Assume for simplicity that λ is a binary
connective. We write the chain of simple equalities (observe that we use Part 3.): g(λA(x, y)) =
g(‖λ(Px, Py)‖〈M,A〉) = ‖λ(Px, Py)‖〈M′,B〉 = λB(‖Px‖〈M

′,B〉, ‖Py‖〈M
′,B〉) = λB(g(x), g(y)).

We show that g is one-to-one: let us assume that a 6= b and g(a) = g(b), i.e. ‖Pa‖〈M
′,B〉 =

‖Pb‖〈M
′,B〉. Thus 〈M′,B〉 |= Pa ↔ Pb. As (Pa ↔ Pb) ∈ Ψ we obtain a contradiction.

Nevertheless, all existing proofs of standard completeness for predicate fuzzy logics L∀ are not
based on this model-theoretic property but on the following algebraic property: every countable
L-chain has a σ-embedding on an L-chain over [0, 1]. Thus one may wonder if for any class K
of L-chains, strong completeness of L∀ with respect to K implies that every countable L-chain
is σ-embeddable into a chain from K. In other words, one may wonder whether this algebraic
condition is not only sufficient but also necessary for the strong K-completeness. This question
will receive a negative answer in Subsection 5.3. Now we give its model-theoretic counterpart
which, by comparing it to the conditions in Theorem 5.9, already suggests that in general it will
not be equivalent to the strong K-completeness.

Theorem 5.10. Let L be a (∆-)core fuzzy logic. Then the following are equivalent:

(i) For every countable L-chain A and every countable model 〈M,A〉 there is an L-chain B ∈ K
and a model 〈M′,B〉 such that 〈M,A〉 can be elementarily embedded into 〈M′,B〉 via 〈f, g〉
where f is an isomorphism.

(ii) Every countable L-chain A can be σ-embedded into some L-chain B ∈ K.

Both (i) and (ii) imply that L∀ has SKC.

Proof. The implication (ii) ⇒ (i) and the final claim are simple. We prove (i) ⇒ (ii). First, we
define the predicate language Γ0 which consists of two binary predicates S and I. Let us define
the model 〈M,A〉 with domain A in the following way:

• ‖S(a, b)‖〈M,A〉 = a iff a < b and 0 otherwise

• ‖I(a, b)‖〈M,A〉 = a iff a > b and 1 otherwise

Due to (i) there is an L-chain B ∈ K and a model 〈M′,B〉 such that 〈M,A〉 can be elementarily
embedded in 〈M′,B〉 via 〈f, g〉 and f is an isomorphism. We will show that g is the σ-embedding
we are looking for.

All we have to show is that g preserves infinite suprema and infima. We show that g preserves
suprema; the proof for infima is analogous. Let us take a set D ⊆ A such that supD = d and
d 6∈ D. Define the set

←−
d = {a ∈ A | a < d} and observe that sup

←−
d = d. We obtain the following

chain of equalities:

g(d) = g(‖(∃x)S(x, d)‖〈M,A〉) (1)

= ‖(∃x)S(x, f(d))‖〈M
′,B〉 (2)

= sup{‖S(z, f(d))‖〈M
′,B〉 | z ∈ M ′} (3)

= sup{‖S(f(a), f(d))‖〈M
′,B〉 | a ∈M} (4)

= sup{g(‖S(a, d)‖〈M,A〉) | a ∈M} (5)
= sup({g(‖S(a, d)‖〈M,A〉) | a < d} ∪ {g(‖S(a, d)‖〈M,A〉) | a ≥ d}) (6)

= sup g[
←−
d ] (7)

The first equality is due to the semantics of S in 〈M,A〉, the second one is the third property
of elementary embedding, the third one is the definition of Tarskian semantics (we know that the
supremum exist as 〈M′,B〉 is safe), the fourth one is due to the isomorphism f , the fifth one is
the third property of elementary embedding, the sixth one is trivial, and the last one is due to the
definition of S in 〈M,A〉 and the fact that g(0) = 0.
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We clearly know that g(d) is an upper bound of g[D]. Assume that it is not the least upper
bound, i.e. there is a ∈ B such that for each x ∈ D we have g(x) ≤ a < g(d). As g(d) =
sup g[

←−
d ] there is an element in y ∈

←−
d such that g(x) ≤ a < g(y). Thus, when x = y we have a

contradiction.

Like in the propositional case (Propositions 3.16 and 3.18) we can prove:

Proposition 5.11. Let L and L′ be (∆-)core fuzzy logics such that L′∀ is a conservative expansion
of L∀. Let K′ be a class of L′-chains and let K be the class of their L-reducts. Then:

• If L′∀ enjoys the K′C, then L∀ enjoys the KC.

• If L′∀ enjoys the FSK′C, then L∀ enjoys the FSKC.

• If L′∀ enjoys the SK′C, then L∀ enjoys the SKC.

Proposition 5.12. Let L a ∆-core fuzzy logic. Then L∀ has the KC if and only if L∀ has the
FSKC.

Using Theorem 5.9 we can prove an analog of Proposition 3.17 for the SKC. We cannot prove
an analog for the FSKC as, unlike in the propositional case, we have no characterization for this
notion in predicate logics.

Proposition 5.13. Let L be a core fuzzy logic and K a class of L-chains. Then L∀ has the SKC
if and only if L∆∀ has the SK∆C, where K∆ is the class of ∆-expansions of chains in K.

We conclude this subsection by showing the expected relationship between completeness in
predicate and in propositional logics.

Theorem 5.14. Let L be a (∆-)core fuzzy logic and K a class of L-chains. If L∀ has the SKC
(FSKC or KC respectively), then L has the SKC (FSKC or KC respectively).

Proof. We give a proof for the case of SKC, the other two are analogous. Take a predicate language
Γ containing just a nullary predicate constant v′ for each propositional variable v. Let ψ′ be the
predicate Γ-formula corresponding to the propositional formula ψ. Observe that there is a clear
correspondence between models 〈M,A〉 and A-evaluations and between proofs in L and L∀.

Assume that T |=K ϕ. Then clearly 〈M,A〉 |= ϕ′ for each A ∈ K and each model 〈M,A〉 of
{ψ′ | ψ ∈ T}. Thus by the SKC of L∀ we obtain {ψ′ | ψ ∈ T} `L∀ ϕ

′ and so clearly T `L ϕ.

5.2. Disproving the FSKC in a constructive way
In this subsection we propose a general method to constructively disprove the FSKC of the

logic L∀ whenever we can constructively disprove the SKC of the logic L and some other technical
assumptions are met (details below).

Note that the usual way of disproving the FSKC (or even the KC) is based on results about
the position of the classes of K-tautologies in the arithmetical hierarchy, e.g. RC for  Lukasiewicz
predicate logic was disproved by showing the that set of standard tautologies is Π2-complete
(see [66]). Sometimes the proof of these results can be seen as ‘constructive’, as the authors
reduce the true arithmetics to the set of K-tautologies, thus obtaining non-arithmeticity of the
latter and disproving the KC as well. This technique was used for refuting the RC for many logics
over BL (see [53] and the survey paper [38] for more details). There is also a paper [55] where the
author refutes the FSRC for a wide class of fuzzy logics using similar techniques. As we will see
our method is really constructive, simpler, and more general than the ones sketched above.

Let us take a finite propositional language L. We define a predicate language Γ0 which consists
of a functional symbol λ̇ for each λ ∈ L, a nullary function symbol v̇ for each propositional variable
and unary predicates Ev and T. By ϕ̇ we denote the closed Γ0-term corresponding to a formula
ϕ (in the obvious way). Furthermore we define the theory:

T0 = {Ev(λ̇(x1, . . . xn))↔ λ(Ev(x1), . . . ,Ev(xn)) | λ ∈ L} ∪ {T(x)→ Ev(x)}.

The proofs of the following two lemmata are almost straightforward.
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Lemma 5.15. Let 〈M,A〉 |= T0. The mapping e : FmL → A defined as e(ϕ) = ||ϕ̇||〈M,A〉 is an
A-model of the propositional theory {ϕ | TM(ϕ̇) = 1A}.

Given any L-chain A, any propositional theory T and any evaluation e which is an A-model
of T , we define a special model 〈Fm,A〉e,T with domain FmL as:

• λ̇Fm(ϕ1, . . . ϕn) = λ(ϕ1, . . . , ϕn)

• EvFm(ϕ) = e(ϕ)

• TFm(ϕ) = 1A if ϕ ∈ T and 0A otherwise.

Notice that in 〈Fm,A〉e,T we have ϕ̇Fm = ϕ.

Lemma 5.16. Let A be an L-chain, T a propositional theory and e an A-model of T . Then
〈Fm,A〉e,T |= T0.

Definition 5.17. Let L be a (∆-)core fuzzy logic. We say that a propositional theory T is en-
codable in L∀ if there is a finite set of formulae T1 in a predicate language Γ ⊇ Γ0 such that the
following conditions hold for each L-chain A:

for each A-structure 〈M,A〉 if 〈M,A〉 |= T0 ∪ T1, then T ⊆ {ϕ | TM(ϕ̇) = 1A} (1)

for each A-model e of T there is a model 〈M,A〉 of T1 extending19〈Fm,A〉e,T (2)

Of course any finite theory T is encodable by T1 = {T(ϕ̇)}, where ϕ is the conjunction of all
formulae in T .

Definition 5.18. Let L be a (∆-)core fuzzy logic. We say that L has a simple counterexample to
the SKC if there is an encodable theory T c and a formula ϕc such that T c 6`L ϕ

c and T c |=K ϕc.

We give two examples to illustrate the notion of encodable theory.

Proposition 5.19.  Lukasiewicz logic has a simple counterexample to the SRC.

Proof. It is well known (see e.g. [36]) that the theory T c = {np1 → p2 | n natural} ∪ {¬p1 → p2}
and the formula ϕc = p2 provide a counterexample to the SRC of  Lukasiewicz logic (where
ϕ⊕ ψ = ¬ϕ→ ψ and nϕ is ϕ⊕ ϕ · · · ⊕ ϕ n-times). We show that T c is an encodable theory. We
define a predicate language Γ as the extension of Γ0 by a new unary predicate Q and a theory T1

as:
T1 = {Q(ṗ1),Q(x)→ Q(x⊕̇ṗ1),Q(x)→ T(x→̇ṗ2),T(¬̇ṗ1→̇ṗ2)}

To prove condition (1) observe that 〈M,A〉 |= T1 entails {np1 | n natural} ⊆ {ϕ | QM(ϕ̇) = 1}.
The rest is simple. To prove condition (2) just define QM(ϕ) = 1 if ϕ = np1 for some natural n
and 0 otherwise.

Proposition 5.20. The logic ΠMTL has a simple counterexample to the SRC.

Proof. In [45] is shown that T c = {¬¬r, p → q,¬p → q} ∪ {(pn → r) → q | n ≥ 0} ∪ {ϕ ∧ ψ →
ϕ&(ϕ→ ψ) | ϕ,ψ formulae in p, r} and the formula ϕc = q provide a counterexample to the SRC
of ΠMTL (where ϕn is ϕ&ϕ . . .&ϕ n-times). We show that T c is an encodable theory. We define
a predicate language Γ as the extension of Γ0 by new unary predicates F and R and theories:

TF = {F(ṗ),F(ṙ),F(0̇)} ∪ {F(x) ∧ F(y)→ F(x λ̇ y) | λ ∈ {&,→,∧}}

TR = {R(ṗ),R(x)→ R(x &̇ ṗ),R(x)→ T((x →̇ ṙ) →̇ q̇)}
T1 = TF ∪ TR ∪ {T(¬̇¬̇ṙ),T(ṗ →̇ q̇),T(¬̇ṗ →̇ q̇),F(x) ∧ F(y)→ T(x∧̇y →̇ x&̇(x →̇ y))}

The proof that the set T1 satisfies both conditions of encodability is analogous to the case of
 Lukasiewicz logic.

19By extended model we mean a model with the same domain and added realizations of new predicate symbols.
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Theorem 5.21. Let L be a (∆-)core fuzzy logic with a simple counterexample to the SKC. Then
L∀ has not the FSKC.

Proof. Let T1 be the theory providing the encoding of T c. Let us define the theory T2 = T0 ∪ T1.
We show that T2 6`L∀ Ev(ϕ̇c) and 〈M,A〉 |= Ev(ϕ̇c) for each A ∈ K and each model 〈M,A〉 of
the theory T2.

From T c 6`L ϕ
c we know that there is an L-chain A and an A-model e of T c such that e(ϕc) < 1.

Using condition (2) we know there is a model 〈M,A〉 of T1 expanding the model 〈Fm,A〉e,T
c

and
so 〈M,A〉 is a model of T2. Because ‖Ev(ϕ̇c)‖〈M,A〉 = ‖Ev(ϕ̇c)‖〈Fm,A〉 = ‖Ev(ϕc)‖〈Fm,A〉 =
e(ϕc) < 1 we obtain T2 6`L∀ Ev(ϕ̇c).

We prove the second claim by the way of contradiction: assume that there is an algebra A ∈ K
and a model 〈M,A〉 of T2 such that 〈M,A〉 6|= Ev(ϕ̇c). Using Lemma 5.15 we obtain the A-model
e of {TM(ϕ̇) = 1} defined as e(ϕ) = ||Ev(ϕ̇)||〈M,A〉. Thus e(ϕc) < 1. However, using condition (1)
we know that T c ⊆ {ϕ | TM(ϕ̇) = 1}, i.e. that e is a model of T c and so we obtain a contradiction
with T c |=K ϕc.

Corollary 5.22.  L∀ and ΠMTL∀ do not enjoy the FSRC.

The rest of this subsection is devoted to the study of some sufficient conditions for a set of
formulae to be encodable. Later, in Subsection 5.3, we will see some application of these results
for particular logics and semantics.

�

In this part we use the machinery of formal languages and grammars (see e.g. [11]). Let us
recall that a formal grammar G consists of:

• a finite set of terminal symbols T ;

• a finite set of nonterminal symbols N ;

• a finite set of production rules with a left- and a right-hand side consisting of a sequence of
terminal and nonterminal symbols R;

• a start symbol S ∈ N .

For a set of symbols T , a formal language in the alphabet T is a set of finite strings of symbols
from T . The elements of a language are called words. Each formal grammar defines (generates)
a formal language, whose words are constructed by applying production rules to a sequence of
symbols which initially contains just the start symbol. A rule may be applied to a sequence of
symbols by replacing an occurrence of the symbols on the left-hand side of the rule with those
that appear on the right-hand side. Let us denote the language in the alphabet T generated by a
grammar G as L(G). A grammar is context-free if all the production rules have on the left sides
just one non-terminal symbol. For our needs we define a special auxiliary subclass of context-free
grammars.

Definition 5.23. Let A be a language in the alphabet T . We say that a grammar G = 〈T ,N ,R, S〉
is A-cautious iff for each N ∈ N we have: L(〈T ,N ,R, N〉) ⊆ A.

Observe that if G is A-cautious then obviously L(G) ⊆ A. Notice that the set of propositional
formulae in a finite language L and a finite set of propositional variables VAR (let us denote this
set as FmVAR

L ) is a formal language generated by the context-free grammar (VAR∪L, {S},R, S)
where R consists of (we are using Polish notation for the sake of simplicity):

S 7→ v for each v ∈ VAR

S 7→ λ for each 0-ary λ ∈ L
S 7→ λS n. . . S for each n-ary λ ∈ L, n ≥ 1
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Theorem 5.24. Let L be a (∆-)core fuzzy logic in a finite propositional language L and T a
propositional theory, such that T = L(G) for some FmL-cautious context-free grammar G. Then
T is encodable in L∀.

Proof. Let us without loss of generality assume that there is no rule such that a non-terminal
symbol appears on its right side more than once. First notice that if some propositional theory
T = L(G) for some grammar G, then T ⊆ FmVAR

L for some finite set VAR of propositional
variables and that G is FmVAR

L -cautious.
Take G = 〈T ,N ,R, T 〉 (the reasons for denoting the initial symbol by T will become clear in

the next few lines). Let us define Γ = Γ0 ∪ {N | N ∈ N}, where N’s are unary predicates (notice
that we also added a predicate T which was already present in Γ0). As G is FmL-cautious we
know that from any non-terminal we can derive just formulae. Thus, if α is a right side of a rule
R ∈ R then the word ᾱ resulting from α by replacing:

• each λ ∈ L by λ̇

• each v ∈ V AR by v̇

• each non-terminal K by an object variable xK

is clearly a Γ0-term. Observe that if α is a formula then ᾱ = α̇.
For each rule R of the form N 7→ α, let NR be the set of non-terminals appearing in α. We

define a theory:
T1 = {

∧
K∈NR

K(xK)→ N(ᾱ) | R ∈ R}.

(We understand the empty conjunction as the truth constant 1.) Now we have to prove both
conditions on encodability. To prove condition (1) we take any model 〈M,A〉 |= T1 and for each
N ∈ N and each formula ϕ derivable in 〈T ,N ,R, N〉 we show that NM(ϕ̇) = 1. Thus as a
consequence we obtain T ⊆ {ϕ | TM(ϕ̇) = 1}. We do it by induction on the minimal length of
derivation of ϕ in a grammar 〈T ,N ,R, N〉: first assume that ϕ is derivable by one step, i.e. there
is the rule N 7→ ϕ. Thus there is a formula 1 → N(ϕ̇) ∈ T1 and so NM(ϕ̇) = 1. Second, assume
that the length of derivation is n+ 1. Assume that the first rule used was the rule R of the form
N 7→ α; for each K ∈ NR there must be a formula ϕK derivable in 〈T ,N ,R,K〉 in at most n
steps, such that if in the term ᾱ we replace each occurrence of variable xK by term ϕ̇K we obtain
term ϕ̇. Now we can use the induction assumption to obtain that KM(ϕ̇K) = 1. We also know
that

∧
K∈NR

K(xK) → N(ᾱ) ∈ T1. Take an instance of this formula for xK = ϕ̇K . As it holds in

〈M,A〉 we obtain that NM(ϕ̇) = 1.
To prove condition (2) just define NM(ϕ) = 1 if ϕ is derivable in the grammar 〈T ,N ,R, N〉

and 0 otherwise.

Notice that the encodability does not depend on the logic but just on the “form” of the theory
in question. Also notice the “constructive” nature of the above proof: given a formal description
of the theory T we construct the encoding theory T1.

Let us show how Theorem 5.24 applies to the example given for  Lukasiewicz logic:20 T c =
{np1 → p2 | n natural}∪ {¬p1 → p2}. This theory is clearly encodable by an Fm{→,¬,⊕}-cautious
context-free grammar

〈{p1, p2,→,¬,⊕}, {T,Q},R, T 〉

with the set of rules R consisting of (again, we are using Polish notation for the sake of simplicity):

S 7→ →¬p1p2 Q 7→ p1

S 7→ →Qp2 Q 7→ ⊕Qp1

20However the other example mentioned above, for ΠMTL logic, does not fulfill the sufficient condition given in
Theorem 5.24.
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5.3. Completeness w.r.t. distinguished semantics
As in the propositional case we study completeness w.r.t. five distinguished classes of algebras:

the classes of standard (real) chains R, rational chains Q, hyperreal chains R?, strict hyperreal
chains R?s and finite chains F . In the first-order case, much less is known (mainly due to lack of
some characterization of completeness and finite strong completeness).

We start with the standard semantics. In the paper [56] Montagna and Ono considered the
issue of standard completeness for MTL∀. They realized that the embedding construction used
in the proof of the SRC for MTL as defined in [47] does not work for the first-order case because
in general it does not preserve infima and suprema. They modified it slightly (as we have already
presented in Subsection 4.1) in such a way that it gives a σ-embedding so they obtained a proof of
the SRC for MTL. The same method works also for other prominent fuzzy logics. Table 5 collects
the known results regarding standard completeness for some predicate fuzzy logics, where the
negative results follow either from our knowledge of the situation in the propositional case using
the constructive method described in Subsection 5.2 or from the known arithmetical hierarchy
results surveyed in [38].

Logic RC FSRC, SRC QC, FSQC, SQC FC, FSFC, SFC
MTL∀, IMTL∀, SMTL∀ Yes Yes Yes No

WCMTL∀, ΠMTL∀ ? No ? No
BL∀, SBL∀ No No No No

BL∀+, SBL∀+ No No Yes No
 L∀, Π∀ No No Yes No

 Ln∀, Gn∀ No No No Yes
G∀, NM∀, WNM∀,

CnMTL∀, CnIMTL∀ Yes Yes Yes No
CPC∀ No No No Yes

Table 5: Standard, rational-chain and finite completeness properties for some axiomatic extensions of MTL∀.

We continue with the finite-chain semantics. First recall that there are many equivalent con-
ditions for a propositional logic L to have the SFC (see Proposition 4.18). Observe that one of
them is that there are only finite L-chains. Thus, we can clearly conclude:

Proposition 5.25. Let L be a propositional (∆-)core fuzzy logic. Then the following are equiva-
lent:

(i) L enjoys the SFC,
(i) L∀ enjoys the SFC,

(ii) L enjoys the F-E,
(iii) all L-chains are finite,
(iv) there is a natural number n such that the length of each L-chain is less or equal than n, and
(v) there is a natural number n such that `L

∨
i<n(xi → xi+1).

In order to deal with weaker notions of finite-chain completeness, consider the following two
formulae21 (cf. [4]):

(C∃) (∃y)((∃x)ϕ(x)→ ϕ(y))
(C∀) (∃y)(ϕ(y)→ (∀x)ϕ(x))

We can easily obtain the following proposition.

21They are essential for the notion of witnessed completeness, see [39].
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Proposition 5.26. Let L be a propositional (∆-)core fuzzy logic such that L∀ enjoys the FC.
Then `L∀ (C∃) and `L∀ (C∀).

The examples in [36, Lemma 5.3.6] can be used to show that (C∃) is unprovable in G∀ and
(C∀) is unprovable both in G∀ and in Π∀. We can also easily show that 6`NM∀ (C∀). Thus
we have just disproved the FC in many fuzzy logics. On the other hand, ` L∀ (C∃) and ` L∀
(C∀). Here we could either observe that an analogy of Corollary 5.22 holds also for finite-chain
semantics (as the simple counterexample to the SRC is also a simple counterexample to the SFC
of propositional  Lukasiewicz logic), or we could notice that [36, Theorem 5.4.30] disproves FC of
predicate  Lukasiewicz logic. See all the results in Table 5. The table for ∆ expansions of prominent
fuzzy logics would be the same.

Finally, we prove a slightly stronger variant of the proposition above for ∆-core fuzzy logics.
Consider the following formula:

(C∆) ∆(∃x)ϕ→ (∃x)∆ϕ

We can easily obtain the following proposition and its corollary.

Proposition 5.27. Let L be a propositional ∆-core fuzzy logic such that L∀ enjoys the KC. Then
`L∀ (C∆) iff each L-chain from K has a co-atom.

Corollary 5.28. Let L be a propositional ∆-core fuzzy logic such that L∀ enjoys the FC. Then
each L-chain has a co-atom.

�

We now turn to rational- and (strict) hyperreal-chain completeness. We start by an important
lemma from the theory of Abelian `-groups.

Lemma 5.29. Every totally ordered countable Abelian `-group G embeds into a densely ordered
countable Abelian `-group G′ by a σ-embedding.

Proof. Let G+ denote the set of strictly positive elements of G. We distinguish two cases:
Case (a): G+ has no minimum. We claim that in this case G is densely ordered. Indeed, given

a, b ∈ G with a < b, there is a c ∈ G such that 0 < c < b− a, because b− a ∈ G+ and G+ has no
minimum. Hence a < a+ c < b, and G is densely ordered. Thus letting G′ = G we have that G′ is
densely ordered and countable, and G embeds into G′ by the identity embedding, which is clearly
a σ-embedding.

Case (b): G+ has minimum m. We claim that in this case if a subset X of G has a supremum s,
then s ∈ X, that is, every supremum is a maximum. Suppose s = sup(X). Then since s−m < s,
there is x ∈ X such that s − m < x ≤ s. It follows that 0 ≤ s − x < m and since m is the
minimum of G+, it must be s− x = 0 and s = x ∈ X, as desired. By the same argument we can
show that every infimum is a minimum. Since any embedding of G into any `-group G′ preserves
maxima and minima, and since every supremum is a maximum and every infimum is a minimum,
it follows that any embedding of G into an `-group G′ is a σ-embedding. Thus it suffices to find a
densely ordered and countable `-group in which G embeds. For this, it suffices to take G ×lex Q,
that is, the `-group whose domain is the Cartesian product G × Q, whose sum and inverse are
defined pointwise, that is, 〈a, b〉+ 〈c, d〉 = 〈a+ c, b+ d〉 and −〈a, b〉 = 〈−a,−b〉, and whose order
� is defined by 〈a, b〉 � 〈c, d〉 iff either a < c or a = c and b ≤ d.

Corollary 5.30. Every countable MV-chain embeds into a rational MV-chain by a σ-embedding.

Proof. Let A be a countable MV-chain. By using Lemma 5.29 and Mundici’s Γ functor (see
e.g. [13]) we obtain that A is σ-embeddable into a countable densely ordered rational MV-chain,
which in turn is order isomorphic to [0, 1]Q, hence A is σ-embeddable into a rational MV-chain.

Theorem 5.31.  L∀ has the SQC.
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Proof. It is a direct consequence of Corollary 5.30 and Theorem 5.10.

Remark 5.32. The claim of Corollary 5.31 was pointed out to the fifth author of the present
paper by Petr Hájek on 2006, and more recently by Tommaso Flaminio and Enrico Marchioni.
Since we need it in the sequel, and since as far as we know there is no published proof, we have
proved it here. However, we do not claim any priority.

Lemma 5.29 can also be used to prove the strong rational completeness for other predicate
logics. Indeed, by using that every Π-chain is isomorphic to the negative cone of a totally ordered
Abelian `-group with an added bottom element (see e.g. [15]) one obtains that every countable
Π-chain is embeddable into a rational Π-chain by a σ-embedding, and thus Π∀ enjoys the SQC.
Nevertheless, the rational completeness properties fail for BL∀ and SBL∀.

Theorem 5.33. BL∀ and SBL∀ do not enjoy the QC.22

Proof. Consider the formula (∀x)(χ&ϕ)→ (χ&(∀x)ϕ), where x is not free in χ. In [36, page 102]
it is proved that this formula is satisfied by every model on a densely ordered BL-chain, so in
particular it is a rational tautology. However, thanks to a countermodel found by Félix Bou
(see [24]), we know that it is not a tautology for all BL-chains. Indeed, let C the ordinal sum
of  Lukasiewicz three-element chain defined over {0, 1

4 ,
1
2} and the standard Π-chain defined over

the real interval [ 1
2 , 1]; consider the subalgebra C′ defined over the subuniverse C ′ = C \ { 1

2} and
let ∗ be its monoidal operation. Then C′ does not satisfy the formula as 1

4 ∗ inf( 1
2 , 1] = 0 6=

1
4 = inf{ 1

4 ∗ a | a ∈ ( 1
2 , 1]}. Now we will turn this counterexample to an SBL-chain showing

that the formula is not provable in SBL∀ neither. Just consider the ordinal sum of the two-
element G-chain defined over {0, 1

8}, the  Lukasiewicz three element chain over { 1
8 ,

1
4 ,

1
2} and the

standard Π-chain over [ 1
2 , 1]. The formula fails on the subchain obtained by removing 1

2 , since
1
4 ∗ inf( 1

2 , 1] = 1
8 6=

1
4 = inf{ 1

4 ∗ a | a ∈ ( 1
2 , 1]}.

Let BL∀+ be the extension of BL∀ with the axiom schema ∀x(ϕ&ψ(x))→ ϕ&∀xψ(x). Observe
that it is not the first-order version of a core fuzzy logic as defined above, but a pure first-
order axiomatic extension of the first-order version of a core fuzzy logic. Nevertheless, we can
still consider a slightly modified notion of the SQC for such a logic, namely it will be strong
completeness with respect to models over rational BL-chains.23

Theorem 5.34. BL∀+ enjoys the SQC.

Proof. Let Σ be the set of all instances of the schema ∀x(ϕ&ψ(x)) → ϕ&∀xψ(x). Assume that
T 6`BL∀+ ϕ. Then T ∪ Σ 6`BL∀ ϕ and so by the completeness of BL∀ there is a structure 〈M,A〉
such that A is a countable BL-chain, 〈M,A〉 |= T ∪Σ and 〈M,A〉 6|= ϕ. We will prove the following
fact:

Claim: There is a structure 〈M′,A′〉 such that A′ is a densely ordered countable BL-chain,
A ⊆ A′ and for every sentence α, ‖α‖A′M′ = ‖α‖AM.

For every pair 〈a1, a2〉 ∈ A2 such that a1 < a2 and the open interval (a1, a2) is empty (i.e. a2

is the successor of a1) we perform the following construction:

1. Assume that a1 and a2 are in the same Wajsberg component24 C of A. Recall that C must
be either a negative cone G− or an MV-algebra Γ(G, u) for some countable totally ordered
Abelian group G. We replace G with its divisible extension G′ (which is still countable).

22For logics of the form L∗∀ where ∗ is a continuous t-norm given by a finite ordinal sum of basic components
it has been described in [28] which of them enjoy the QC (or, equivalently, which of them prove the schema
(∀x)(χ&ϕ)→ (χ&(∀x)ϕ)).

23Notice that it is not necessary to require that these models satisfy the additional schema: we get it for free
because their underlying BL-chains are densely ordered.

24For the role of Wajsberg hoops in the structure of BL-chains see [1].
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2. If a1 and a2 are in different Wajsberg components, then a2 is an idempotent (otherwise
a1 < (a2)2 < a2). If a1 is idempotent as well, we add an isomorphic copy of [0, 1]QG between
a1 and a2. If a1 is not idempotent, then it lies in some Wajsberg component C of the form G−
or Γ(G, u), which is discretely ordered. Moreover, a1 is the coatom of C and ((a1)2, a1) = ∅.
Indeed, if (a1)2 < z < a1, then a1 ≤ a1 → z < 1 and hence, since a1 is coatom, a1 = a1 → z.
But then z = a1 ∧ z = a1&(a1 → z) = (a1)2, a contradiction. C will be substituted by a
densely ordered component when we consider the pair 〈(a1)2, a1〉.

Let A′ be the densely ordered countable BL-chain resulting from this construction. Take
M′ = M. We prove ‖α‖AM = ‖α‖A′M′ by induction on the complexity of α.

• If α is atomic, it is clear because M′ = M.

• If α is a combination by propositional connectives of simpler formulae, the result is obvious.

• Assume that α = ∃xβ. It is enough to see that the suprema of A are preserved in A′.
Suppose that a = supA C for some C ⊆ A. We must prove a = supA′ C. If a ∈ C we are
done. Assume a /∈ C. Then a cannot be in a discretely ordered Wajsberg component of A
and it cannot be an idempotent such that for some b < a (b, a) = ∅. It follows that in some
left neighbourhood of a we have not added new elements and thus a = supA′ C.

• Assume that α = ∀xβ(x) (let us assume for simplicity that β has no free variables besides
x). The previous argument does not work, as some infima may fail to be preserved, but still
we can prove that all relevant infima are preserved, i.e. those needed for the interpretation of
universal formulae. Suppose by the way of contradiction that a = infA{‖β(d)‖AM | d ∈M} is
not preserved in A′. Then we must have added some new element z such that ‖∀xβ(x)‖AM =
a < z and z ≤ ‖β(d)‖AM for every d ∈ M . In particular, a must be a proper infimum. It
cannot be an idempotent, otherwise either it would be the minimum of a densely ordered
Wajsberg component or it would be a limit point of elements from different components,
but in both cases we cannot have added z. Therefore, a is a non-idempotent element in the
interior of some discretely ordered Wajsberg component C of A, and hence a is the coatom
of C and the elements of {‖β(d)‖AM | d ∈ M} are not in C. But this leads to the following
contradiction: a2 = ‖∀xβ(x)‖AM&‖∀yβ(y)‖AM < a = ‖∀yβ(y)‖AM = ‖∀x(∀yβ(y)&β(x))‖AM ≤
a2, the last equality holds because infA{‖β(d)‖AM | d ∈ M} = a = inf{a&‖β(d)‖AM | d ∈
M}) and the last inequality hold because ∀x(∀yβ(y)&β(x)) → ∀yβ(y)&∀xβ(x) ∈ Σ and
〈M,A〉 |= Σ.

Now, using the claim, we consider the densely ordered countable BL-chain A′. It is isomorphic
to a BL-chain over [0, 1]Q and hence we have a structure on the rational unit interval where the
formulae in T are true, while ϕ is false, as desired.

Observe that if we define SBL∀+ as the extension of SBL∀ with the axiom schema ∀x(ϕ&ψ(x))→
ϕ&∀xψ(x), we can prove that it enjoys the SQC in a completely analogous way, as the construc-
tion of the previous theorem applied to a countable SBL-chain gives a countable densely ordered
SBL-chain. In contrast, these logics do not enjoy the real completeness properties. Indeed, since
all standard BL-chains are dense and hence satisfy the additional axiom, the set of standard
tautologies of BL∀+ (resp. SBL∀+) coincides with the set of standard tautologies of BL∀ (resp.
SBL∀), which is known to be non recursively enumerable (not even arithmetical).

All the results are collected in Table 5 and they show that, as in the propositional case, the
rational-chain completeness properties do not imply the corresponding standard completeness
properties. On the contrary, the reverse implications do hold for every predicate (∆-)core fuzzy
logic as we will prove below, and it allows to complete the table.

Before we prove it we need to consider the relations of rational chain-completeness properties
with hyperreal-chain and strict-hyperreal-chain completeness properties. To this end, we will
make use of the following trick that allows to construct a classical first-order structure from an
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A-structure for a (∆-)core fuzzy logic and vice versa. Let us, for simplicity, restrict to predicate
languages Γ without function symbols.

Let L be a (∆-)core fuzzy logic in propositional language L, A an L-chain and 〈M,A〉 a model.
Without loss of generality we may assume that the domain M of M and the domain A of A are
disjoint. We associate to 〈M,A〉 a classical first-order structure AM as follows:

• The domain of AM is the union of A and M .

• For every operation f ∈ L, the model AM has a function f∗ of the same arity, defined by
f∗AM

(x1, . . . , xn) = f(x1, . . . , xn) if x1, . . . , xn ∈ A, and f∗AM
(x1, . . . , xn) = 0A otherwise.

• For every Γ-formula ϕ(x1, . . . , xn) of L∀, in the free variables shown, AM has a function
ϕ∗(x1, . . . , xn) defined by ϕ∗AM

(d1, . . . , dn) = ||ϕ(d1, . . . , dn)||〈M,A〉 if d1, . . . , dn ∈ M , and

ϕ∗AM
(d1, . . . , dn) = 0A otherwise.

• FinallyAM has two unary predicates, MM(x), interpreted as x ∈M , and AM(x), interpreted
as x ∈ A; and one binary predicate a ≤M b interpreted as a→A b = 1A.

Clearly the following the formulae are satisfied in AM:

(a) ∀x(M(x)↔ ¬A(x)).

(b) The relativizations25 to A(x) of all sentences which are true in A.

(c) For every n-ary f ∈ L, the formula ∀−→x A(f∗(−→x )), where −→x stands for x1, . . . , xn and ∀−→x
stands for ∀x1 . . . ∀xn.

(d) For every Γ-formula ϕ(−→x ), the axiom ∀−→x A (ϕ∗(−→x )).

(e) For every n-ary f ∈ L and for every Γ-formulae ϕ1(−→x ), . . . , ϕn(−→x ), the formula

∀−→x
(−→
M(−→x )→ ((f(ϕ1, . . . , ϕn))∗(−→x ) ≈ f∗(ϕ∗1(−→x ), . . . , ϕ∗n(−→x ))

)
,

where
−→
M(−→x ) stands for M(x1) ∧ . . . ∧M(xm).

(f) For every Γ-formula ϕ(x, x1, ..., xn), the formulae

(f1) ∀z∀−→x ((
−→
M(−→x ) ∧A(z))→ ((∀xϕ)∗(−→x ) ≈ z ↔

↔ ∀u(A(u)→ (u ≤ z ↔ ∀w(M(w)→ u ≤ ϕ∗(w,−→x ))))), and

(f2) ∀z∀−→x ((
−→
M(−→x ) ∧A(z))→ ((∃xϕ)∗(−→x ) ≈ z ↔

↔ ∀u(A(u)→ (u ≥ z ↔ ∀w(M(w)→ u ≥ ϕ∗(w,−→x ))))).

Conversely, given a classical model C of (a)–(f) one can construct AC and MC as follows:
the domain of AC is the set A = {x ∈ C | C |= A(x)}, the domain of MC is the set M =
{x ∈ C | C |= M(x)}, and the operations f of AC (predicates P of MC) are the restrictions
of the functions f∗C to A (respectively P ∗C to M . Note that axioms (a)–(f) guarantee that AC is
an L-chain and MC is a safe first-order AC-structure and for every Γ-formula ϕ and for every
d1, . . . , dn ∈M , ‖ϕ(d1, . . . , dn)‖〈MC,AC〉 = ϕ∗C(d1, . . . , dn).

Theorem 5.35. Let L be a (∆-)core fuzzy logic. The following are equivalent:

(1) L∀ has the R?C.

(2) L∀ has the QC.

25The relativization ΘA of a formula Θ to A is defined inductively as follows: ΘA = Θ if Θ is atomic: A commutes
with (classical) connectives; (∀xΘ)A = ∀x(A(x)→ ΘA) and (∃xΘ)A = ∃x(A(x) ∧ΘA).
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(3) L∀ has the R?sC.

Moreover, if L∀ has the RC then these three equivalent conditions hold. Finally, the same claims
hold for strong and finite strong completeness notions as well.

Proof. The proof we are going to present does not depend on the cardinality of the set T , thus
we prove all the claims at once. First notice that since the hyperreal chains contain the standard
chains it is obvious that the RC implies the R?C. Also observe that the implication (3) ⇒ (1) is
trivial.

Now we prove (1) ⇒ (2): assume that T 6`L∀ ϕ. From R?C (FSR?C or SR?C respectively)
we obtain an L-chain A over an ultrapower of [0, 1] (possibly [0, 1] itself) and a model 〈M,A〉 of
T such that 〈M,A〉 6|= ϕ. Construct the classical first-order structure AM as shown above, and
take (by the Löwenheim-Skolem theorem) a countable elementary substructure C of AM. Thus
〈MC,AC〉 is a model of T and 〈MC,AC〉 6|= ϕ. Because ≤C is a dense linear order on A with
maximum and minimum and thus is isomorphic to [0, 1]Q, we can consider that AC is a rational
L-chain.

Finally, we prove (2) ⇒ (3): assume that T 6`L∀ ϕ. From QC (FSQC or SQC respectively) we
obtain an L-chain A with the domain [0, 1]Q and a model 〈M,A〉 of T such that 〈M,A〉 6|= ϕ.

[0, 1]Q and [0, 1] (considered as totally ordered sets) are densely ordered and have maximum and
minimum. Since the theory of dense linear orders with maximum and minimum is complete, [0, 1]Q

and [0, 1] have isomorphic ultrapowers, ([0, 1]Q)I/U and [0, 1]J/W , where I and J are suitable
index sets and U and W are ultrafilters, on I and on J respectively, giving proper extensions of
[0, 1]Q and [0, 1] respectively. Now consider the classical structure AM, and take its ultrapower
C = (AIM)/U . This is an elementary extension of the former structure and thus 〈MC,AC〉 is a
model of T and 〈MC,AC〉 6|= ϕ. To complete the proof just notice that the lattice reduct of B is
([0, 1]Q)I/U , which is isomorphic to a non-standard ultrapower of [0, 1].

We will end by showing that, as stated before, the strong K-completeness does not imply
in general the σ-embeddability. First we justify the requirement made in the definition of the
strict hyperreal semantics which prevented the ultrafilters from being closed under intersections
of countable families.

Lemma 5.36. Let U be an ultrafilter over a set I closed under intersections of countable families.
Then the ultrapower [0, 1]I/U is isomorphic to [0, 1].

Proof. The claim is trivial if U is a principal ultrafilter. Thus, assume that U is not principal.
In this case | I | must be a measurable cardinal. It is known from Set Theory that if U is closed
under intersections of countable families, then it is also closed under intersection of families of
any cardinal κ < | I |. Moreover, since | I | is a measurable cardinal, it must be strictly bigger
than the cardinal of [0, 1]. Now for any sequence 〈ai : i ∈ I〉 and any α ∈ [0, 1] we define the set
Iα = {i ∈ I | ai = α}. Of course, {Iα | α ∈ [0, 1]} is a partition of I whose cardinal is smaller
than | I |. Then

⋂
{I \ Iα | α ∈ [0, 1]} = I \

⋃
{Iα | α ∈ [0, 1]} = ∅ /∈ U , hence there is (a unique)

α such Iα ∈ U which means that 〈ai : i ∈ I〉/U and 〈α, . . . , α, . . .〉/U are the same element in
the ultrapower. Then by mapping every α ∈ [0, 1] to 〈α, . . . , α, . . .〉/U we obtain a surjection on
[0, 1]I/U , so this ultrapower is isomorphic to [0, 1].

Now, after showing a special property of the non-standard ultrapowers, we will be able to prove
the result.

Lemma 5.37. In every non-standard ultrapower [0, 1]? = [0, 1]I/U (i.e. where U is a non-principal
ultrafilter on I and it is not closed under intersections of countable families) there is no strictly
decreasing countable sequence converging to 0.

Proof. By the assumption, there is a countable sequence I0, ..., In, ... of subsets of I such that for
every n, In ∈ U and

⋂
n∈ω In /∈ U . Let for n > 0, Jn = I \ In−1, Yn = Jn \

⋃
i<n Ji, and let

Y0 = I \
⋃
i∈ω,i>0 Yi. Then it is easily seen that {Yn : n ∈ ω} is a partition of I such that for all n,
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Yn /∈ U . Now suppose by contradiction that α0 = 〈a0i : i ∈ I〉/U, . . . , αn = 〈ani : i ∈ I〉/U, . . . is
a countable decreasing sequence with limit 0. Without loss of generality we may assume aij > 0.
Indeed since αi > 0, the set N = {j : aij = 0} is not in U , therefore if we change the value
of aij in N , the equivalence class does not change. Thus we may safely replace 〈aij : j ∈ I〉
by 〈a′ij : j ∈ I〉 where a′ij = aij if aij > 0 and a′ij = 1 otherwise. Moreover we can assume
a1i ≥ a2i ≥ . . . ≥ ani ≥ . . . (if not, we can replace aij by min {akj : k ≤ i} without changing
the equivalence classes). Now define β = 〈bi : i ∈ I〉/U where bi = a0i

2 if i ∈ Y0, . . ., bi = aki
2

if i ∈ Yk, . . .. Note that for all n, bn > 0, therefore β > 0. Moreover for every n the set
{i ∈ I : bi < ani} contains

⋃
m≥n Ym, therefore it is in U . Thus by the ultraproduct theorem we

have 0 < β < αn for every n, and a contradiction has been reached.

Theorem 5.38.  L∀ has the SR?C and SR?sC, but there is a non-trivial countable MV-chain which
cannot be σ-embedded into any (strict) hyperreal-chain.

Proof. Both completeness properties hold due to Theorems 5.35 and 5.31. Let A be any non-
Archimedean MV-chain without an atom (e.g. apply Mundici’s Γ functor to the Abelian `-group
Q×Q with strong unit 〈1, 0〉) Clearly, A cannot be embedded into the standard MV-algebra (as
it is non-Archimedean). Further, there has to be a countable set of positive non-zero elements
of A with infimum 0, thus the existence of a σ-embedding of A into a non-standard hyperreal
MV-chain A∗ would imply the existence of a countable decreasing sequence in A∗ converging to
0, which contradicts Lemma 5.37.

6. Conclusions

In the first part of this paper we have carried out a general investigation on semantics for
propositional core and ∆-core fuzzy logics. We have obtained several useful characterizations
for the completeness properties of these logics which, in fact, show that the methods that have
been often used in the literature in order to prove completeness results were based on conditions
not only sufficient but also necessary. We have also described many relations between different
completeness properties with respect to several distinguished semantics. Nevertheless, a significant
question arose in the investigation and it is left without answer: In which cases (in the absence of
∆ connective) does the KC imply the FSKC? We have seen that, no matter if K is the semantics of
real, rational, hyperreal, strict hyperreal or finite chains, this couple of properties always happen
to be equivalent in the prominent logics. We think that in order to solve this problem some better
algebraic characterization of the KC would be needed.

In the second part of the paper we have tried to break a new ground by bringing the inves-
tigation on completeness properties to the not so deeply developed area of first-order core fuzzy
logics. Here we have obtained again a good characterization of a completeness property, the SKC,
in model-theoretic terms, and we have shown that the algebraic property commonly used to prove
the SKC, the σ-embeddability, is in fact just a sufficient but not necessary condition. The restric-
tion to particular semantics has also revealed several interesting relations between them. This
investigation has left several open problems as well:

• Are the three completeness properties (KC, FSKC and SKC) for first-order fuzzy logics
equivalent as it happens in the prominent examples with the five distinguished semantics?
If not, for which semantics K and which classes of logics are they equivalent? Again, the
lack of good equivalencies for KC and FSKC makes the problem still too hard to be solved.

• We have shown that in some special cases the failure of propositional SKC entails a failure
of first-order FSKC. Are there other interesting relations between completeness properties
in the propositional and in the first-order level?

• We have shown that the standard completeness properties imply the corresponding rational
(and hyperreal and strict hyperreal) completeness properties for first-order logics. Some
examples (all of them extensions of BL∀) show that the converse is not true. How can we

36



decide the rational completeness properties for other kinds logics (for instance, ΠMTL∀ and
WCMTL∀) where a deep algebraic knowledge of the corresponding variety is not available?

Acknowlegdements: We are grateful to Félix Bou for his reading and useful comments
to Section 5 and to Mauro Di Nasso for discussion about ultrapowers of [0, 1] and measurable
cardinals.
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Petr Hájek, Erich Peter Klement eds.), 2009.

[41] Petr Hájek, Llúıs Godo, and Francesc Esteva. A complete many-valued logic with product
conjunction. Archive for Mathematical Logic, 35(3):191–208, 1996.
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[46] Rostislav Horč́ık and Petr Cintula. Product  Lukasiewicz logic. Archive for Mathematical
Logic, 43(4):477–503, 2004.

[47] Sándor Jenei and Franco Montagna. A proof of standard completeness for Esteva and Godo’s
logic MTL. Studia Logica, 70(2):183–192, 2002.

[48] C.H. Ling. Representation of associative functions. Publicationes Mathematicae Debrecen,
12:189–212, 1965.
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Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, 23(iii):30–50, 1930.

[51] George Metcalfe and Franco Montagna. Substructural fuzzy logics. Journal of Symbolic Logic,
72(3):834–864, 2007.

[52] Franco Montagna. Generating the variety of BL-algebras. Soft Computing, 9(12):869–874,
2005.

[53] Franco Montagna. On the predicate logics of continuous t-norm BL-algebras. Archive for
Mathematical Logic, 44:97–114, 2005.

[54] Franco Montagna. Subreducts of MV-algebras with product and product residuation. Algebra
Universalis, 53(1):109–137, 2005.

[55] Franco Montagna, Carles Noguera, and Rostislav Horč́ık. On weakly cancellative fuzzy logics.
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of BL-algebras generated by single-component chains. Archive for Mathematical Logic, 41:
673–685, 2002.
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